Genomic and Proteomic Characterization of the Deltamethrin-Degrading Bacterium Paracoccus sp. P-2
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Chemicals
2.2. Genomic DNA Extraction and Sequencing
2.3. Genome Annotation and Analysis
2.4. Culture Conditions and Sample Preparation
2.5. Detect the Content of Deltamethrin by Gas Chromatography
2.6. Proteomic Sample Preparation and LC-MS/MS Analysis
2.6.1. Protein Extraction
2.6.2. Protein Digestion and Desalting
2.6.3. LC-MS/MS Analysis
2.7. Bioinformatics Analysis
3. Results and Discussion
3.1. Genome Sequencing of Paracoccus sp. P-2
3.2. Genome Functional Annotation
3.3. Changes in Deltamethrin on the Protein Expression of Paracoccus sp. P-2
3.4. Effect of Deltamethrin on Carbon Metabolism in Paracoccus sp. P-2
3.5. Effect of Deltamethrin on Energy Metabolism in Paracoccus sp. P-2
3.6. Biodegradation of Deltamethrin by Paracoccus sp. P-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.R.; Yuan, Z.; Wang, X.; Martínez, M.A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef] [PubMed]
- Čolak, S.; Barić, R.; Kolega, M.; Mejdandžić, D.; Mustać, B.; Petani, B.; Župan, I.; Šarić, T. Effect of the pesticide deltamethrin as a treatment of Ceratothoa oestroides infestations of farmed sea bass Dicentrarchus labrax. Aquaculture 2019, 500, 322–326. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, F.; Sun, J.; Yuan, S.G.; Zheng, B.; Zhang, W.; An, W.; Yang, M. Residual levels of pesticides in freshwater fish from Beijing aquatic product markets and health risk assessment. Huan Jing Ke Xue Huanjing Kexue 2013, 34, 251–256. [Google Scholar]
- Xu, Q.; Zhu, B.; Dong, X.; Li, S.; Song, X.; Xiao, X.; Zhang, C.; Lv, Y.; Zhang, X.; Li, Y. Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: A birth cohort study. J. Toxicol. Sci. 2020, 45, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Song, X.; Li, Y.; Jian, X.; Chen, S.; Chen, Y.; Li, Y. Urinary concentrations and determinants of pyrethroid metabolites in pregnant women from non-rural areas of Yunnan, China. Ann. Agric. Environ. Med. AAEM 2021, 28, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Barbasz, A.; Kreczmer, B.; Skórka, M.; Czyżowska, A. Toxicity of pesticides toward human immune cells U-937 and HL-60. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 719–725. [Google Scholar] [CrossRef]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J. Current Research on the Safety of Pyrethroids Used as Insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Wu, J.; Peng, H.; Cheng, P.; Liu, H.; Zhang, Y.; Gong, M. Microbial degradation mechanisms, degradation pathways, and genetic engineering for pyrethroids: Current knowledge and future perspectives. Crit. Rev. Toxicol. 2025, 55, 80–104. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, W. Microbial elimination of pyrethroids: Specific strains and involved enzymes. Appl. Microbiol. Biotechnol. 2022, 106, 6915–6932. [Google Scholar] [CrossRef]
- Cycoń, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front. Microbiol. 2016, 7, 1463. [Google Scholar] [CrossRef]
- Khajezadeh, M.; Abbaszadeh-Goudarzi, K. A newly isolated Streptomyces rimosus strain capable of degrading deltamethrin as a pesticide in agricultural soil. J. Basic Microbiol. 2020, 60, 435–443. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, X.; Duan, B.; Huo, S.; Lin, W.; Xia, X.; Liu, K. Screening and Genome Sequencing of Deltamethrin-Degrading Bacterium ZJ6. Curr. Microbiol. 2018, 75, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hao, X.; Huo, S.; Lin, W.; Xia, X.; Liu, K.; Duan, B. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant. Arch. Microbiol. 2019, 201, 1207–1217. [Google Scholar] [CrossRef]
- Ning, M.; Hao, W.; Cao, C.; Xie, X.; Fan, W.; Huang, H.; Yue, Y.; Tang, M.; Wang, W.; Gu, W.; et al. Toxicity of deltamethrin to Eriocheir sinensis and the isolation of a deltamethrin-degrading bacterium, Paracoccus sp. P-2. Chemosphere 2020, 257, 127162. [Google Scholar] [CrossRef]
- Coleman, N.V.; Mattes, T.E.; Gossett, J.M.; Spain, J.C. Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl. Environ. Microbiol. 2002, 68, 2726–2730. [Google Scholar] [CrossRef]
- Chen, S.; Yang, L.; Hu, M.; Liu, J. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl. Microbiol. Biotechnol. 2011, 90, 755–767. [Google Scholar] [CrossRef]
- Gong, T.; Xu, X.; Dang, Y.; Kong, A.; Wu, Y.; Liang, P.; Wang, S.; Yu, H.; Xu, P.; Yang, C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Sci. Total Environ. 2018, 628–629, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Gong, T.; Zuo, Z.; Zhao, F.; Fan, X.; Yang, C.; Song, C. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. J. Microbiol. Methods 2015, 113, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kjeldal, H.; Zhou, N.A.; Wissenbach, D.K.; von Bergen, M.; Gough, H.L.; Nielsen, J.L. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10. Environ. Sci. Technol. 2016, 50, 744–755. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X.; Liu, Z.; Li, J.; Ye, J.; Zha, Z. Deltamethrin transformation by Bacillus thuringiensis and the associated metabolic pathways. Environ. Int. 2020, 145, 106167. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. “Circlize” Implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Apweiler, R.; Bairoch, A.; Wu, C.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Punta, M.; Coggill, P.C.; Eberhardt, R.Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; et al. The Pfam protein families database. Nucleic Acids Res. 2012, 40, D290–D301. [Google Scholar] [CrossRef]
- Tatusov, R.; Galperin, M.; Natale, D.; Koonin, E. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Haft, D.; Selengut, J.; White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003, 31, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Xie, X.; Wang, X.; Lin, L.; Yang, L.; Luan, T.; Chen, B. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. Environ. Pollut. 2018, 243, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Lewinson, O.; Orelle, C. Structures of ABC transporters: Handle with care. FEBS Lett. 2020, 594, 3799–3814. [Google Scholar] [CrossRef]
- Mutanda, I.; Sun, J.; Jiang, J.; Zhu, D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol. Adv. 2022, 59, 107952. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gupta, N. Fundamentals of Bacterial Physiology and Metabolism, 1st ed.; Springer: Singapore, 2021; pp. 267–287. [Google Scholar]
- Xiong, Y.; Lei, Q.; Zhao, S.; Guan, K. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb. Symp. Quant. Biol. 2011, 76, 285. [Google Scholar] [CrossRef]
- Koçak, E.; Dageri, A. Key regulatory genes of pyruvate homeostasis in Trogoderma granarium: Transcriptional responses to cold-and starvation-induced diapause. J. Stored Prod. Res. 2025, 114, 102703. [Google Scholar] [CrossRef]
- Horecker, B. The pentose phosphate pathway. J. Biol. Chem. 2002, 277, 47965–47971. [Google Scholar] [CrossRef] [PubMed]
- TeSlaa, T.; Ralser, M.; Fan, J.; Rabinowitz, J.D. The pentose phosphate pathway in health and disease. Nat. Metab. 2023, 5, 1275–1289. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhou, Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol. Lett. 2019, 17, 4213–4221. [Google Scholar] [CrossRef]
- Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef]
- Haddad, A.; Mohiuddin, S. Biochemistry, citric acid cycle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- MacLean, A.; Legendre, F.; Appanna, V. The tricarboxylic acid (TCA) cycle: A malleable metabolic network to counter cellular stress. Crit. Rev. Biochem. Mol. Biol. 2023, 58, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Padhy, S.; Bhattacharyya, P.; Dash, P.; Nayak, S.; Parida, S.; Baig, M.; Mohapatra, T. Elucidation of dominant energy metabolic pathways of methane, sulphur and nitrogen in respect to mangrove-degradation for climate change mitigation. J. Environ. Manag. 2022, 303, 114151. [Google Scholar] [CrossRef]
- Flores, E.; Herrero, A. Assimilatory nitrogen metabolism and its regulation. In The Molecular Biology of Cyanobacteria; Bryant, D.A., Ed.; Springer: Dordrecht, The Netherlands, 1994; pp. 487–517. [Google Scholar]
- Zhang, Y.; Tang, J.; Wang, S.; Zhou, X.; Peng, C.; Zhou, H.; Wang, D.; Lin, H.; Xiang, W.; Zhang, Q.; et al. Mechanism of deltamethrin biodegradation by Brevibacillus parabrevis BCP-09 with proteomic methods. Chemosphere 2024, 350, 141100. [Google Scholar] [CrossRef]
- Morales-García, L.; Ricardez-García, C.; Castañeda-Tamez, P.; Chiquete-Félix, N.; Uribe-Carvajal, S. Coupling/uncoupling reversibility in isolated mitochondria from Saccharomyces cerevisiae. Life 2021, 11, 1307. [Google Scholar] [CrossRef]
- Huang, Y.; Jan, Y.; Chang, Y.; Tsai, H.; Wu, A.; Chen, C.; Hsiao, M. ATP synthase subunit epsilon overexpression promotes metastasis by modulating AMPK signaling to induce epithelial-to-mesenchymal transition and is a poor prognostic marker in colorectal cancer patients. J. Clin. Med. 2019, 8, 1070. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, X.; Kennes, C.; Chen, J.; Chen, D.; Ye, J.; Zhang, S.; Dionysiou, D. Differences of cell surface characteristics between the bacterium Pseudomonas veronii and fungus Ophiostoma stenoceras and their different adsorption properties to hydrophobic organic compounds. Sci. Total Environ. 2018, 650, 2095–2106. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, R.; Zhao, L.; Xu, Q.; Lv, J.; Ma, F. Sorption of petroleum hydrocarbons before transmembrane transport and the structure, mechanisms and functional regulation of microbial membrane transport systems. J. Hazard. Mater. 2023, 441, 129963. [Google Scholar] [CrossRef]
- Gu, H.; Chen, Y.; Liu, X.; Wang, H.; Shen-Tu, J.; Wu, L.; Zeng, L.; Xu, J. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Front. Microbiol. 2016, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Hesham, A.; Alamri, S.; Khan, S.; Mahmoud, M.; Mahmoud, H. Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. Afr. J. Biotechnol. 2009, 8, 2218–2223. [Google Scholar]
- Li, J.; Xu, Y.; Song, Q.; Zhang, S.; Xie, L.; Yang, J. Transmembrane transport mechanism of n-hexadecane by Candida tropicalis: Kinetic study and proteomic analysis. Ecotoxicol. Environ. Saf. 2021, 209, 111789. [Google Scholar] [CrossRef]
- Daniel, G.; Magali, R.; Celine, B.; Eric, C.; Mikael, E. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens. Sci. Rep. 2014, 4, 6636. [Google Scholar]
- Donoso-Piñol, P.; Briceño, G.; Evaristo, J.; Nogueira, F.; Schalchli, H.; Diez, M. Proteome Changes Induced by Iprodione Exposure in the Pesticide-Tolerant Pseudomonas sp. C9 Strain Isolated from a Biopurification System. Int. J. Mol. Sci. 2024, 25, 10471. [Google Scholar] [CrossRef]
- Martin, C.; Cami, B.; Yeh, P.; Stragier, P.; Parsot, C.; Patte, J. Pseudomonas aeruginosa diaminopimelate decarboxylase: Evolutionary relationship with other amino acid decarboxylases. Mol. Biol. Evol. 1988, 5, 549–559. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, Y.; Ren, X.; Meng, Q.; Xu, B.; Fan, L.; Guo, C.; Zhang, B.; Ning, M.; Wang, Y. Genomic and Proteomic Characterization of the Deltamethrin-Degrading Bacterium Paracoccus sp. P-2. Microorganisms 2025, 13, 2481. https://doi.org/10.3390/microorganisms13112481
Li Q, Zhang Y, Ren X, Meng Q, Xu B, Fan L, Guo C, Zhang B, Ning M, Wang Y. Genomic and Proteomic Characterization of the Deltamethrin-Degrading Bacterium Paracoccus sp. P-2. Microorganisms. 2025; 13(11):2481. https://doi.org/10.3390/microorganisms13112481
Chicago/Turabian StyleLi, Qing, Yawei Zhang, Xianfeng Ren, Qingguo Meng, Baocheng Xu, Lixia Fan, Changying Guo, Bingchun Zhang, Mingxiao Ning, and Yutao Wang. 2025. "Genomic and Proteomic Characterization of the Deltamethrin-Degrading Bacterium Paracoccus sp. P-2" Microorganisms 13, no. 11: 2481. https://doi.org/10.3390/microorganisms13112481
APA StyleLi, Q., Zhang, Y., Ren, X., Meng, Q., Xu, B., Fan, L., Guo, C., Zhang, B., Ning, M., & Wang, Y. (2025). Genomic and Proteomic Characterization of the Deltamethrin-Degrading Bacterium Paracoccus sp. P-2. Microorganisms, 13(11), 2481. https://doi.org/10.3390/microorganisms13112481

