Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. PCR Amplification and High-Throughput MiSeq Sequencing
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Changes Physicalin and Chemical Factors
3.2. Characteristics of Microbial Taxa
3.3. Microbial Community Structure Characteristics
3.4. Differences in the Bacterial Community Structure and Species Composition
3.5. Environmental Driving Factors of Microbial Community Structure Difference
3.6. Differences in Biogeochemical Functions of the Bacterial Community
4. Discussion
4.1. Oyster Aquaculture Disturbs Environmental Factors
4.2. Effects on the Marine Microbial Community Structure
4.3. Oyster Aquaculture Affects Biogeochemical Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawde, R.K.; North, E.W.; Hood, R.R.; Long, W.; Wang, H.; Wilberg, M.J. A high resolution hydrodynamic-biogeochemical-oyster-filtration model predicts that the presence of oysters (Crassostrea virginica) can improve, or reduce, water quality depending upon oyster abundance and location. Ecol. Model. 2024, 496, 110833. [Google Scholar] [CrossRef]
- Martínez-Baena, F.; Lanham, B.S.; McLeod, I.M.; Taylor, M.D.; McOrrie, S.; Luongo, A.; Bishop, M.J. Remnant Oyster Reefs as Fish Habitat within the Estuarine Seascape. Mar. Environ. Res. 2022, 179, 105675. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, Y.; Xu, Y.; Wen, G.; Su, H.; Hu, X.; Xu, W.; Jie, L.; Yu, Z. Study on Purification Effect of Shellfish and Algae Coupling on Intensive Aquaculture Tailwater. South China Fish. Sci. 2023, 19, 113–122. [Google Scholar] [CrossRef]
- Song, X.; Song, J.; Yan, Q.; Zhou, J.; Cai, Z. Assembly of a Benthic Microbial Community in a Eutrophic Bay with a Long History of Oyster Culturing. Microorganisms 2021, 9, 2019. [Google Scholar] [CrossRef]
- Jeong, H.; Araújo, D.F.; Ra, K. Combined Copper Isotope and Elemental Signatures in Bivalves and Sediments from the Korean Coast: Applicability for Monitoring Anthropogenic Contamination. Mar. Pollut. Bull. 2024, 208, 116930. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Liu, X.; Yan, X.; Huang, L.; Luo, C.; Tan, K.; Kwan, K.Y. Performance of Fishery Carbon Sink of Oyster Aquaculture (Mainly Crassostrea hongkongensis) in Guangxi, China: A Long-Term (2003–2022) Analysis. Estuar. Coast. Shelf Sci. 2024, 300, 108707. [Google Scholar] [CrossRef]
- Xie, L.; Yang, B.; Xu, J.; Dan, S.F.; Ning, Z.; Zhou, J.; Kang, Z.; Lu, D.; Huang, H. Effects of Intensive Oyster Farming on Nitrogen Speciation in Surface Sediments from a Typical Subtropical Mariculture Bay. Sci. Total Environ. 2024, 916, 170092. [Google Scholar] [CrossRef]
- Coffin, M.R.S.; Clements, J.C.; Comeau, L.A.; Guyondet, T.; Maillet, M.; Steeves, L.; Winterburn, K.; Babarro, J.M.F.; Mallet, M.A.; Haché, R.; et al. The Killer within: Endogenous Bacteria Accelerate Oyster Mortality during Sustained Anoxia. Limnol. Oceanogr. 2021, 66, 2885–2900. [Google Scholar] [CrossRef]
- Comeau, L.A.; Mallet, A.L.; Carver, C.E.; Guyondet, T. Impact of High-Density Suspended Oyster Culture on Benthic Sediment Characteristics. Aquacult. Eng. 2014, 58, 95–102. [Google Scholar] [CrossRef]
- Gaurier, B.; Germain, G.; Kervella, Y.; Davourie, J.; Cayocca, F.; Lesueur, P. Experimental and Numerical Characterization of an Oyster Farm Impact on the Flow. Eur. J. Mech. B/Fluids 2011, 30, 513–525. [Google Scholar] [CrossRef]
- Gadeken, K.; Clemo, W.C.; Ballentine, W.; Dykstra, S.L.; Fung, M.; Hagemeyer, A.; Dorgan, K.M.; Dzwonkowski, B. Transport of Biodeposits and Benthic Footprint around an Oyster Farm, Damariscotta Estuary, Maine. PeerJ 2021, 9, e11862. [Google Scholar] [CrossRef]
- Whittington, R.J.; Buller, N.; Pathirana, E.; Dhand, N.K.; Hair, S.; Hick, P.M.; Paul-Pont, I. Investigations of the Involvement of Vibrio Species with Ostreid Herpesvirus-1 in Mass Mortality Events in the Pacific Oyster Crassostrea gigas. Aquaculture 2024, 590, 741090. [Google Scholar] [CrossRef]
- Labrie, M.S.; Sundermeyer, M.A.; Howes, B.L. Modelling the Spatial Distribution of Oyster (Crassostrea virginica) Biodeposits Settling from Suspended Aquaculture. Estuaries Coasts 2022, 45, 2690–2709. [Google Scholar] [CrossRef]
- Samperio-Ramos, G.; Vidal-Nieves, C.; García-Esquivel, Z.; Herzka, S.Z.; Sandoval-Gil, J.M.; Camacho-Ibar, V.F. Environmental Influence on Feeding and Biodeposition Rates of Pacific Oysters (Crassostrea gigas) throughout Its Culture Cycle in a Coastal Lagoon with Upwelling Influence. Estuaries Coasts 2024, 47, 1282–1298. [Google Scholar] [CrossRef]
- Yan, Q.; Jia, Z.P.; Song, J.T.; Zhou, J.; Cai, Z. Oyster Culture Changed the Phosphorus Speciation in Sediments through Biodeposition. Environ. Res. 2023, 216, 114586. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, V.S.d.; Lapa, K.R.; de Miranda Gomes, C.H.A.; Gray, M.; da Silva, G.; Garbossa, L.H.P.; Suplicy, F.M.; de Melo, C.M.R. Filtration and Biodeposition Rates of Crassostrea Oysters for Southern Brazilian Waters. Reg. Stud. Mar. Sci. 2022, 56, 102677. [Google Scholar] [CrossRef]
- Jiang, Z.; Du, P.; Liao, Y.; Liu, Q.; Chen, Q.; Shou, L.; Zeng, J.; Chen, J. Oyster Farming Control on Phytoplankton Bloom Promoted by Thermal Discharge from a Power Plant in a Eutrophic, Semi-Enclosed Bay. Water Res. 2019, 159, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Okumura, Y.; Masuda, Y.; Matsutani, M.; Shiomoto, A. Influence of Oyster and Seaweed Cultivation Facilities on Coastal Environment and Eukaryote Assemblages in Matsushima Bay, Northeastern Honshu, Japan. Front. Mar. Sci. 2023, 9, 1022168. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Tan, L.; Wang, L.; Wu, F.; Li, L.; Zhang, G. Host-Microbiota Interactions Play a Crucial Role in Oyster Adaptation to Rising Seawater Temperature in Summer. Environ. Res. 2023, 216, 114585. [Google Scholar] [CrossRef]
- Lameira Silva, O.L.; Veríssimo, S.M.M.; da Rosa, A.M.B.P.; Iguchi, Y.B.; Nunes, E.d.S.C.d.L.; Moraes, C.M.; Cordeiro, C.A.M.; Xavier, D.d.A.; Pinto, A.S.O.; Peixoto Joele, M.R.S.; et al. Effect of environmental factors on microbiological quality of oyster farming in amazon estuaries. Aquac. Rep. 2020, 18, 100437. [Google Scholar] [CrossRef]
- Cho, A.; Finke, J.F.; Zhong, K.X.; Chan, A.M.; Saunders, R.; Schulze, A.; Warne, S.; Miller, K.M.; Suttle, C.A. The Core Microbiome of Cultured Pacific Oyster Spat Is Affected by Age but Not Mortality. Microbiol. Spectr. 2024, 12, e00031-24. [Google Scholar] [CrossRef]
- Ricketts, O.M.A.; Isaac, S.R.; Lara, R.A.; Mendela, T.S.; Enzor, L.A.; Silver, A.C. Elevated Temperature and Decreased Salinity Impacts on Exogenous Vibrio Parahaemolyticus Infection of Eastern Oyster, Crassostrea Virginica. Front. Microbiol. 2024, 15, 1388511. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Q.; Xu, W.; Wang, L.; Wu, F.; Tan, L.; Li, L.; Zhang, G. Characterization of Water Microbiota and Their Relationship with Resident Oysters during an Oyster Mortality Event. Microbiol. Spectr. 2024, 12, e02881-23. [Google Scholar] [CrossRef]
- Fang, G.; Yu, H.; Zhang, Y.; Liang, J.; Tang, Y.; Liang, Z. Diversities and Shifts of Microbial Communities Associated with Farmed Oysters (Crassostrea gigas) and Their Surrounding Environments in Laoshan Bay Marine Ranching, China. Microorganisms 2023, 11, 1167. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.Y.; Cai, L.Z.; Chen, B.W.; Chen, X.; Zheng, L.; Lin, S. How Do Spatial and Environmental Factors Shape the Structure of a Coastal Macrobenthic Community and Meroplanktonic Larvae Cohort? Evidence from Daya Bay. Mar. Pollut. Bull. 2020, 157, 111242. [Google Scholar] [CrossRef]
- Pierangeli, G.M.F.; Domingues, M.R.; Choueri, R.B.; Hanisch, W.S.; Gregoracci, G.B.; Benassi, R.F. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. Microb. Ecol. 2022, 86, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yao, T.; Yu, G.; Ye, L. Adaptive response of triploid fujian oyster (Crassostrea angulata) to nanoplastic stress: Insights from physiological, metabolomic, and microbial community analyses. Chemosphere 2023, 341, 140027. [Google Scholar] [CrossRef]
- Fang, G.; Yu, H.; Sheng, H.; Tang, Y.; Liang, Z. Comparative Analysis of Microbial Communities between Water and Sediment in Laoshan Bay Marine Ranching with Varied Aquaculture Activities. Mar. Pollut. Bull. 2021, 173, 112990. [Google Scholar] [CrossRef]
- Rajeev, M.; Sushmitha, T.J.; Toleti, S.R.; Pandian, S.K. Sediment-Associated Bacterial Community and Predictive Functionalities Are Influenced by Choice of 16S Ribosomal RNA Hypervariable Region(s): An Amplicon-Based Diversity Study. Genomics 2020, 112, 4968–4979. [Google Scholar] [CrossRef]
- Le Ray, J.; Bec, B.; Fiandrino, A.; Lagarde, F.; Cimiterra, N.; Raimbault, P.; Roques, C.; Rigaud, S.; Régis, J.; Mostajir, B.; et al. Impact of anoxia and oyster mortality on nutrient and microbial planktonic components: A mesocosm study. Aquaculture 2023, 566, 739171. [Google Scholar] [CrossRef]
- Ray, N.E.; Fulweiler, R.W. Meta-Analysis of Oyster Impacts on Coastal Biogeochemistry. Nat. Sustain. 2021, 4, 261–269. [Google Scholar] [CrossRef]
- Ray, N.E.; Hancock, B.; Brush, M.J.; Colden, A.; Cornwell, J.; Labrie, M.S.; Maguire, T.J.; Maxwell, T.; Rogers, D.; Stevick, R.J.; et al. A Review of How We Assess Denitrification in Oyster Habitats and Proposed Guidelines for Future Studies. Limnol. Oceanogr. Methods 2021, 19, 714–731. [Google Scholar] [CrossRef]
- Zhuang, M.; Fu, S.; Yao, T.; Lu, J.; Jiang, H.; Wang, Y.; Hao, Y.; Ye, L. Perkinsus Spp. Infections between Cultured and Wild Oysters Crassostrea hongkongensis and Saccostrea Mordax. South China Fish. Sci. 2024, 20, 169–175. [Google Scholar] [CrossRef]
- Rodhouse, P.G.; Roden, C.M.; Hensey, M.P.; Ryan, T.H. Production of Mussels, Mytilus edulis, in Suspended Culture and Estimates of Carbon and Nitrogen Flow: Killary Harbour, Ireland. J. Mar. Biol. Assoc. UK 1985, 65, 55–68. [Google Scholar] [CrossRef]
- Zheng, L.; Zhai, W.; Wang, L.; Huang, T. Improving the Understanding of Central Bohai Sea Eutrophication Based on Wintertime Dissolved Inorganic Nutrient Budgets: Roles of North Yellow Sea Water Intrusion and Atmospheric Nitrogen Deposition. Environ. Pollut. 2020, 267, 115626. [Google Scholar] [CrossRef]
- Rose, J.M.; Bricker, S.B.; Tedesco, M.A.; Wikfors, G.H. A Role for Shellfish Aquaculture in Coastal Nitrogen Management. Environ. Sci. Technol. 2014, 48, 2519–2525. [Google Scholar] [CrossRef]
- Forrest, B.M.; Keeley, N.B.; Hopkins, G.A.; Webb, S.C.; Clement, D.M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 2009, 298, 1–15. [Google Scholar] [CrossRef]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481, Erratum in Nature 2010, 466, 1134. [Google Scholar] [CrossRef] [PubMed]
- Bruhns, T.; Timm, S.; Feußner, N.; Engelhaupt, S.; Labrenz, M.; Wegner, M.; Sokolova, I.M. Combined Effects of Temperature and Emersion-Immersion Cycles on Metabolism and Bioenergetics of the Pacific Oyster Crassostrea (Magallana) gigas. Mar. Environ. Res. 2023, 192, 106231. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, W.; Li, R.; Liu, Y.; Wang, P.; Zheng, Z.; Guan, Y. Distribution Characteristics, Risk Assessment, and Quantitative Source Apportionment of Typical Contaminants (HMs, N, P, and TOC) in River Sediment under Rapid Urbanization: A Study Case of Shenzhen River, Pearl River Delta, China. Process Saf. Environ. Prot. 2022, 162, 155–168, Erratum in Process Saf. Environ. Prot. 2025, 194, 1625. [Google Scholar] [CrossRef]
- Plutchak, R.; Major, K.; Cebrian, J.; Foster, C.D.; Miller, M.-E.C.; Anton, A.; Sheehan, K.L.; Heck, K.L.; Powers, S.P. Impacts of Oyster Reef Restoration on Primary Productivity and Nutrient Dynamics in Tidal Creeks of the North Central Gulf of Mexico. Estuaries Coasts 2010, 33, 1355–1364. [Google Scholar] [CrossRef]
- Xie, L.; Xu, J.; Yang, B.; Yang, B.; Ning, Z.; Zhu, D.; Lu, D.; Kang, Z.; Zhou, J.; Huang, H. Oyster Farming and Hydrodynamic Conditions Regulate Composition and Sources of Sedimentary Organic Matter in a Typical River-Estuary-Bay Continuum. J. Hydrol. 2025, 661, 133619. [Google Scholar] [CrossRef]
- Campbell, M.D.; Hall, S.G. Hydrodynamic Effects on Oyster Aquaculture Systems: A Review. Rev. Aquacult. 2019, 11, 896–906. [Google Scholar] [CrossRef]
- Todorov, S.D.; Carneiro, K.O.; Lipilkina, T.A.; Do, H.-K.; Miotto, M.; De Dea Lindner, J.; Chikindas, M.L. Beneficial Microorganisms for the Health-Promoting in Oyster Aquaculture: Realistic Alternatives. Aquacult Int. 2024, 32, 10085–10107. [Google Scholar] [CrossRef]
- Xu, C.; Yang, B.; Dan, S.F.; Zhang, D.; Liao, R.; Lu, D.; Li, R.; Ning, Z.; Peng, S. Spatiotemporal Variations of Biogenic Elements and Sources of Sedimentary Organic Matter in the Largest Oyster Mariculture Bay (Maowei Sea), Southwest China. Sci. Total Environ. 2020, 730, 139056. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, É.; Gaertner-Mazouni, N. Nutrient Regeneration in the Water Column and at the Sediment–Water Interface in Pearl Oyster Culture (Pinctada margaritifera) in a Deep Atoll Lagoon (Ahe, French Polynesia). Estuar. Coast. Shelf S 2016, 182, 304–309. [Google Scholar] [CrossRef]
- Erler, D.V.; Welsh, D.T.; Bennet, W.W.; Meziane, T.; Hubas, C.; Nizzoli, D.; Ferguson, A.J.P. The Impact of Suspended Oyster Farming on Nitrogen Cycling and Nitrous Oxide Production in a Sub-Tropical Australian Estuary. Estuar. Coast. Shelf Sci. 2017, 192, 117–127. [Google Scholar] [CrossRef]
- Azandégbé, A.; Poly, F.; Andrieux-Loyer, F.; Kérouel, R.; Philippon, X.; Nicolas, J.-L. Influence of Oyster Culture on Biogeochemistry and Bacterial Community Structure at the Sediment-Water Interface. Fems Microbiol. Ecol. 2012, 82, 102–117. [Google Scholar] [CrossRef]
- Sim, B.-R.; Kim, H.C.; Kang, S.; Lee, D.-I.; Hong, S.; Lee, S.H.; Kim, Y. Geochemical Indicators for the Recovery of Sediment Quality after the Abandonment of Oyster Crassostrea gigas Farming in South Korea. Korean, J. Fish. Aquat. Sci. 2020, 53, 773–783. [Google Scholar] [CrossRef]
- Yan, Q.; Song, J.T.; Zhou, J.; Han, Y.; Cai, Z. Biodeposition of Oysters in an Urbanized Bay Area Alleviates the Black-Malodorous Compounds in Sediments by Altering Microbial Sulfur and Iron Metabolism. Sci. Total Environ. 2022, 817, 152891. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Y.B.; Zhu, J.H.; Shi, X.; Shou, L.; Zeng, J.; Chen, Q.; Chen, J. Influence of Biodeposition by Suspended Cultured Oyster on the Distributions of Trace Elements in Multiple Media in a Semi-Enclosed Bay of China. J. Hazard. Mater. 2023, 443, 130347. [Google Scholar] [CrossRef]
- Shulkin, V.M.; Presley, B.J.; Kavun, V.I. Metal Concentrations in Mussel Crenomytilus Grayanus and Oyster Crassostrea gigas in Relation to Contamination of Ambient Sediments. Environ. Int. 2003, 29, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, J.; Xu, G.; Chen, B. Distribution and Transport of Heavy Metals in Surface Sediments of the Zhejiang Nearshore Area, East China Sea: Sedimentary Environmental Effects. Mar. Pollut. Bull. 2019, 146, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Ping, X.Y.; Zhang, H.; Jiang, Y.Z.; Ling, J.; Sun, P.; Tang, B. Sediment Properties and Benthic Fauna Associated with Stock Enhancement and Farming of Marine Bivalve Populations in Xiangshan Bay, China. Aquac. Res. 2023, 2023, e4729267. [Google Scholar] [CrossRef]
- Liao, Y.B.; Liu, Q.; Shou, L.; Tang, Y.; Liu, Q.; Zeng, J.; Chen, Q.; Yan, X. The Impact of Suspended Oyster Farming on Macrobenthic Community in a Eutrophic, Semi-Enclosed Bay: Implications for Recovery Potential. Aquaculture 2022, 548, 737585. [Google Scholar] [CrossRef]
- Cook, L.S.J.; Briscoe, A.G.; Fonseca, V.G.; Boenigk, J.; Woodward, G.; Bass, D. Microbial, holobiont, and tree of life eDNA/eRNA for enhanced ecological assessment. Trends Microbiol. 2025, 33, 48–65. [Google Scholar] [CrossRef]
- Lavrentyev, P.J.; Gardner, W.S.; Yang, L. Effects of the Zebra Mussel on Nitrogen Dynamics and the Microbial Community at the Sediment-Water Interface. Aquat. Microb. Ecol. 2000, 21, 187–194. [Google Scholar] [CrossRef]
- Liu, W.; Bao, Y.L.; Li, K.J.; Yang, N.; He, P.; He, C.; Liu, J. The Diversity of Planktonic Bacteria Driven by Environmental Factors in Different Mariculture Areas in the East China Sea. Mar. Pollut. Bull. 2024, 201, 116136. [Google Scholar] [CrossRef]
- Vezzulli, L.; Stagnaro, L.; Grande, C.; Tassistro, G.; Canesi, L.; Pruzzo, C. Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). Microb. Ecol. 2018, 75, 495–504. [Google Scholar] [CrossRef]
- Patil, M.P.; Woo, H.-E.; Kim, J.-O.; Kim, K. Field study on short-term changes in benthic environment and benthic microbial communities using pyrolyzed oyster shells. Sci. Total Environ. 2022, 824, 153891. [Google Scholar] [CrossRef]
- Auladell, A.; Barberán, A.; Logares, R.; Garcés, E.; Gasol, J.M.; Ferrera, I. Seasonal Niche Differentiation among Closely Related Marine Bacteria. ISME J. 2022, 16, 178–189. [Google Scholar] [CrossRef]
- Sun, C.-C.; Wang, Y.-S.; Wu, M.-L.; Dong, J.-D.; Wang, Y.-T.; Sun, F.-L.; Zhang, Y.-Y. Seasonal Variation of Water Quality and Phytoplankton Response Patterns in Daya Bay, China. Int. J. Environ. Res. Public Health 2011, 8, 2951–2966. [Google Scholar] [CrossRef]
- Wang, S.; Wu, F.; Gong, X.; Liu, H.; Rao, Y.; Zhang, S.; Hou, G.; Huang, H. Effects of Water Mass Dynamics on the Structure and Distribution of Fish Egg Community in Daya Bay. Mar. Environ. Res. 2025, 211, 107339. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xiao, Y.; Liu, Y.; Wu, P.; Li, C. Long-Term Variations of Biogenic Elements and Nutritional Status in Daya Bay, Northern South China Sea. J. Mar. Sci. Eng. 2023, 11, 904. [Google Scholar] [CrossRef]
- Lee, J.; Kang, S.-H.; Yang, E.J.; Macdonald, A.M.; Joo, H.M.; Park, J.; Kim, K.; Lee, G.S.; Kim, J.-H.; Yoon, J.-E.; et al. Latitudinal Distributions and Controls of Bacterial Community Composition during the Summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhao, Y.; Wang, Z.; Zhang, Y.; Ming, J.; Sun, X.; Ni, S.-Q. Seasonal and Distance-Decay Patterns of Surface Sediments Microbial Nitrogen and Sulfur Cycling Linkage in the Eastern Coast of China. Mar. Pollut. Bull. 2024, 201, 116169. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, Y.; Zhou, C.; Li, H.; Kang, X.; Wang, L.; Song, J.; Jiao, N. Cumulative Impact of Long-Term Intensive Mariculture on Total and Active Bacterial Communities in the Core Sediments of the Ailian Bay, North China. Sci. Total Environ. 2019, 691, 1212–1224. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and Removal of Toxic Heavy Metals by Metal Tolerating Bacteria for Bioremediation of Metal Contamination: A Comprehensive Review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Dhanji-Rapkova, M.; Teixeira Alves, M.; Triñanes, J.A.; Martinez-Urtaza, J.; Haverson, D.; Bradley, K.; Baker-Austin, C.; Huggett, J.F.; Stewart, G.; Ritchie, J.M.; et al. Sea temperature influences accumulation of tetrodotoxin in british bivalve shellfish. Sci. Total Environ. 2023, 885, 163905. [Google Scholar] [CrossRef]
- Banker, R.M.W.; Lipovac, J.; Stachowicz, J.J.; Gold, D.A. Sodium Molybdate Does Not Inhibit Sulfate-Reducing Bacteria but Increases Shell Growth in the Pacific Oyster Magallana Gigas. PLoS ONE 2022, 17, e0262939. [Google Scholar] [CrossRef]
- Filippini, G.; Dafforn, K.A.; Bugnot, A.B. Shellfish as a Bioremediation Tool: A Review and Meta-Analysis. Environ. Pollut. 2023, 316, 120614. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakahara, S.; Hiraoka, K.; Fukuoka, K. Efficacy of the Application of Organic Fertilizer to Oyster Growth. Mar. Pollut. Bull. 2023, 187, 114512. [Google Scholar] [CrossRef]
- Ray, N.E.; Li, J.; Kangas, P.C.; Terlizzi, D.E. Water Quality Upstream and Downstream of a Commercial Oyster Aquaculture Facility in Chesapeake Bay, USA. Aquacult Eng. 2015, 68, 35–42. [Google Scholar] [CrossRef]
- Mara, P.; Edgcomb, V.P.; Sehein, T.R.; Beaudoin, D.; Martinsen, C.; Lovely, C.; Belcher, B.; Cox, R.; Curran, M.; Farnan, C.; et al. Comparison of Oyster Aquaculture Methods and Their Potential to Enhance Microbial Nitrogen Removal from Coastal Ecosystems. Front. Mar. Sci. 2021, 8, 633314. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.; Cui, Q.; Xiang, C.; Li, S.; Huang, J.; Negahdary, M.; Wan, Y. Spatial and Temporal Variation of Microbial Populations and Microbial Metabolic Potential in a Tropical Marine Cage-Culture Sediment System. Ecol. Indic. 2024, 158, 111402. [Google Scholar] [CrossRef]
- Labrie, M.S.; Sundermeyer, M.A.; Howes, B.L. Quantifying the Effects of Floating Oyster Aquaculture on Nitrogen Cycling in a Temperate Coastal Embayment. Estuar. Coast. 2023, 46, 494–511. [Google Scholar] [CrossRef]
- Muñoz, C.; Hidalgo, C.; Zapata, M.; Jeison, D.; Riquelme, C.; Rivas, M. Use of Cellulolytic Marine Bacteria for Enzymatic Pretreatment in Microalgal Biogas Production. Appl. Environ. Microbiol. 2014, 80, 4199–4206. [Google Scholar] [CrossRef]








| Water Environment Factor | OA | CT | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Annual Mean | Spring | Summer | Autumn | Winter | |||
| SST (°C) | 25.94 ± 3.34 | 26.04 ± 3.45 | 0.900 | 0.005 ** | 0.444 | 0.166 | 0.009 ** |
| Salinity (PSU) | 32.96 ± 1.00 | 33.03 ± 0.97 | 0.749 | 0.036 * | 0.510 | 0.738 | 0.003 ** |
| NH4+ (mg·L−1) | 0.10 ± 0.04 | 0.10 ± 0.04 | 0.813 | 0.720 | 0.113 | 0.555 | 0.650 |
| NO3− (mg·L−1) | 0.09 ± 0.02 | 0.09 ± 0.02 | 0.871 | 0.523 | 0.609 | 0.248 | 0.330 |
| DIN (mg·L−1) | 0.19 ± 0.04 | 0.18 ± 0.04 | 0.764 | 0.927 | 0.250 | 0.890 | 0.830 |
| SPR (μg·L−1) | 6.13 ± 2.34 | 6.53 ± 2.85 | 0.521 | 0.159 | 0.006 ** | 0.168 | 0.338 |
| SiO32− (mg·L−1) | 0.12 ± 0.06 | 0.11 ± 0.06 | 0.664 | 0.288 | 0.313 | 0.054 | 0.555 |
| Si/P | 25.29 ± 16.89 | 25.73 ± 18.83 | 0.916 | 0.105 | 0.032 * | 0.030 * | 0.478 |
| COD (mg·L−1) | 0.95 ± 0.43 | 0.98 ± 0.45 | 0.827 | 0.742 | 0.773 | 0.520 | 0.678 |
| Chl a (μg·L−1) | 0.87 ± 0.55 | 0.78 ± 0.62 | 0.529 | 0.001 ** | 0.826 | 0.653 | 0.329 |
| DO (mg·L−1) | 7.51 ± 0.76 | 7.63 ± 0.57 | 0.418 | 0.037 * | 0.618 | 0.682 | 0.914 |
| pH | 8.34 ± 0.20 | 8.33 ± 0.08 | 0.753 | 0.039 * | 0.405 | 0.780 | 0.800 |
| Turbitity (NTU) | 5.37 ± 2.12 | 4.44 ± 1.65 | 0.021 * | 0.066 | 0.224 | 0.122 | 0.040 * |
| Sediment Environment Factor | OA | CT | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Annual Mean | Spring | Summer | Autumn | Winter | |||
| TOC (%) | 1.15 ± 0.44 | 0.56 ± 0.25 | <0.001 *** | 0.003 ** | 0.003 ** | 0.006 ** | 0.007 ** |
| TN (%) | 0.13 ± 0.06 | 0.11 ± 0.05 | 0.055 | 0.413 | 0.201 | 0.284 | 0.073 |
| TP (%) | 0.21 ± 0.06 | 0.19 ± 0.08 | 0.257 | 0.413 | 0.08 | 0.047 * | 0.983 |
| C/N | 12.33 ± 12.33 | 8.43 ± 9.15 | 0.133 | 0.258 | 0.546 | 0.007 ** | 0.007 ** |
| Sulfide (mg·kg−1) | 67.72 ± 70.03 | 24.99 ± 20.65 | <0.001 *** | 0.22 | 0.052 | 0.092 | 0.109 |
| Cd (mg·kg−1) | 0.04 ± 0.04 | 0.03 ± 0.02 | 0.022 * | 0.213 | 0.179 | 0.43 | 0.1 |
| Pb (mg·kg−1) | 44.54 ± 18.05 | 19.64 ± 9.08 | <0.001 *** | 0.021 * | <0.001 *** | <0.001 *** | <0.001 *** |
| Cu (mg·kg−1) | 34.81 ± 15.54 | 8.16 ± 4.98 | <0.001 *** | 0.005 ** | <0.001 *** | 0.001 ** | <0.001 *** |
| Zn (mg·kg−1) | 83.32 ± 34.79 | 38.66 ± 20.08 | <0.001 *** | 0.003 ** | 0.001 ** | 0.002 ** | 0.012 * |
| Cr (mg·kg−1) | 63.54 ± 21.41 | 40.79 ± 21.95 | <0.001 *** | 0.013 * | 0.633 | <0.001 *** | <0.001 *** |
| Sps (mm) | 0.01 ± 0.01 | 0.02 ± 0.02 | <0.001 *** | 0.064 | 0.734 | 0.104 | 0.19 |
| Diversity Index | Control | Oyster Aquaculture | p |
|---|---|---|---|
| Shannon | 2.91 ± 0.12 | 3.14 ± 0.15 | 0.01 |
| Chao | 344 ± 43.01 | 458.65 ± 101.09 | 0.01 |
| Invsimpson | 9.77 ± 1.65 | 11.11 ± 1.67 | 0.13 |
| Shannoneven | 0.53 ± 0.02 | 0.55 ± 0.01 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, F.; Feng, X.; Yuan, H.; Chen, Y.; Chen, P. Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove. Microorganisms 2025, 13, 2480. https://doi.org/10.3390/microorganisms13112480
Tong F, Feng X, Yuan H, Chen Y, Chen P. Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove. Microorganisms. 2025; 13(11):2480. https://doi.org/10.3390/microorganisms13112480
Chicago/Turabian StyleTong, Fei, Xue Feng, Huarong Yuan, Yuxiang Chen, and Pimao Chen. 2025. "Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove" Microorganisms 13, no. 11: 2480. https://doi.org/10.3390/microorganisms13112480
APA StyleTong, F., Feng, X., Yuan, H., Chen, Y., & Chen, P. (2025). Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove. Microorganisms, 13(11), 2480. https://doi.org/10.3390/microorganisms13112480

