Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.1.1. Soil Physical-Chemical Profile
2.1.2. Microbial Community Metabarcoding
2.2. Bacterial Isolation
2.3. In Vitro Plant Growth-Promoting Traits
2.4. 16S rRNA Barcoding and Phylogenetic Study
2.5. Consortium Formulation
2.6. Controlled Condition Experiment on Medicago sativa
2.7. Greenhouse Experiment on Triticum durum
- A, no bacteria and no salt stress
- B, no bacteria and salt stress 250 mM
- C, no bacteria and salt stress 500 mM
- D, no bacteria and salt stress 750 mM
- E, no bacteria and salt stress 1500 mM
- F, bacteria and no salt stress
- G, bacteria and salt stress 250 mM
- H, bacteria and salt stress 500 mM
- I, bacteria and salt stress 750 mM
- J, bacteria and salt stress 1500 mM
2.8. Plant Analyses
2.8.1. Chlorophyll Evaluation
2.8.2. Estimation of the Proline Content
2.8.3. Evaluation of Antioxidant Activity
2.9. Statistical Analysis
3. Results
3.1. Soil Physical-Chemical Profile
3.2. Microbial Community Metabarcoding
3.3. In Vitro Plant Growth-Promoting Traits
3.4. 16S rRNA Barcoding and Phylogenetic Study
3.5. Controlled Condition Experiment on Medicago sativa
3.6. Greenhouse Experiment on Triticum durum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum Wheat Productivity Today and Tomorrow: A Review of Influencing Factors and Climate Change Effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar] [CrossRef]
- Tortajada, C.; Zhang, H. When Food Meets BRI: China’s Emerging Food Silk Road. Glob. Food Secur. 2021, 29, 100518. [Google Scholar] [CrossRef]
- Boudersa, N.; Chaib, G.; Aicha, A.; Cherfia, R.; Bouderbane, H.; Boudour, L. Assessment of Biological and Agronomic Diversity of Seven Durum Wheat Varieties Cultivated in the Northeastern Region of Algeria. Biodiversitas J. Biol. Divers. 2021, 22, 1025–1036. [Google Scholar] [CrossRef]
- Mcnulty, S.; Kourat, T.; Smadhi, D.; Madani, A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. Climate 2022, 10, 50. [Google Scholar] [CrossRef]
- Chab, L.; Biagini, L.; Severini, S. Towards an Effective Risk Management in Durum Wheat Production: A Systematic Review and Bibliometric Analysis of Factors Influencing Quality and Yield. Agriculture 2024, 14, 2266. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions 2.0. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Shultana, R.; Zuan, A.T.K.; Naher, U.A.; Islam, A.K.M.M.; Rana, M.; Rashid, H.; Irin, I.J.; Islam, S.S.; Rim, A.A.; Hasan, A.K. The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy 2022, 12, 2266. [Google Scholar] [CrossRef]
- Oh, G.G.K.; O’Leary, B.M.; Signorelli, S.; Millar, A.H. Alternative Oxidase (AOX) 1a and 1d Limit Proline-Induced Oxidative Stress and Aid Salinity Recovery in Arabidopsis. Plant Physiol. 2022, 188, 1521–1536. [Google Scholar] [CrossRef]
- Song, W.; Shao, H.; Zheng, A.; Zhao, L.; Xu, Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. Plants 2023, 12, 3475. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, R.; You, M.; Barbetti, M.; Chen, Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Tang, Y.; Cui, X.; Hou, D.; Jia, H.; Wang, S.; Guo, L.; Wang, J.; Lin, A. Mitigating Soil Salinity Stress with Titanium gypsum and Biochar Composite Materials: Improvement Effects and Mechanism. Chemosphere 2023, 321, 138127. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.K.; Kaur, J.; Singh, G.B.; Chauhan, A.; Tamang, J.; Lakhara, N.; Asyakina, L.; Atuchin, V.; Mudgal, G.; Abdi, G. Novel Bacillus and Prestia Isolates from Dwarf Century Plant Enhance Crop Yield and Salinity Tolerance. Sci. Rep. 2024, 14, 14645. [Google Scholar] [CrossRef]
- Zaki, R.M.; Afify, A.H.; Ashour, E.H.; El-Sawah, A.M. Salt-Tolerant Bacteria Support Salinity Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Maize (Zea mays L.). Microorganisms 2025, 13, 1345. [Google Scholar] [CrossRef]
- Mohanty, P.; Singh, P.K.; Chakraborty, D.; Mishra, S.; Pattnaik, R. Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Front. Sustain. Food Syst. 2021, 5, 667150. [Google Scholar] [CrossRef]
- Martin, R.; Vocciante, M.; Grifoni, M.; Fusini, D.; Petruzzelli, G.; Franchi, E. The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. Appl. Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? Plants 2024, 13, 2371. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bao, Y.; Lv, M.; Zhang, L.; Liu, L.; Liu, Y.; Lu, Q. Comparative Na+ and K+ Profiling Reveals Microbial Community Assembly of Alfalfa Silage in Different Saline-Alkali Soils. Fermentation 2023, 9, 877. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole, Alimentari e Forestali. Piattaforma Itaqua—Linee Guida per la Gestione Dei Dati Ambientali; Ministero delle Politiche Agricole, Alimentari e Forestali: Rome, Italy, 2021. Available online: https://www.masaf.gov.it/flex/cm/pages/ServeAttachment.php/L/IT/D/1%252F6%252Fc%252FD.eb3f000a3b5ef62e3fad/P/BLOB%3AID%3D6248/E/pdf?mode=download (accessed on 6 September 2025).
- Farda, B.; Djebaili, R.; Sabbi, E.; Pagnani, G.; Cacchio, P.; Pellegrini, M. Isolation and Characterization of Cyanobacteria and Microalgae from a Sulfuric Pond: Plant Growth-Promoting and Soil Bioconsolidation Activities. AIMS Microbiol. 2024, 10, 944–972. [Google Scholar] [CrossRef]
- Jaiswal, A.; Kumari, G.; Upadhyay, V.; Pradhan, J.; Singh, H.; Pramanik, K. A Methodology of Isolation for Development of PGPR Consortia. Pharma Inno. 2023, 12, 803–809. [Google Scholar]
- Mehta, S.; Nautiyal, C.S. An Efficient Method for Qualitative Screening of Phosphate-Solubilizing Bacteria. Curr. Microbiol. 2001, 43, 51–56. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E.; Page, A.L. Phosphorus. In Methods of Soil Analisis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Holbrook, A.A.; Edge, W.J.W.; Bailey, F. Spectrophotometric Method for Determination of Gibberellic Acid. In Gibberellins; ACS Publications: Washington, DC, USA, 1961; pp. 159–167. [Google Scholar]
- Brígido, C.; Duan, J.; Glick, B.R. Methods to Study 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria. In Handbook for Azospirillum: Technical Issues and Protocols; Brígido, C., Duan, J., Glick, B.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 287–305. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Ben Mahmoud, O.M.; Hidri, R.; Talbi-Zribi, O.; Taamalli, W.; Abdelly, C.; Djébali, N. Auxin and Proline Producing Rhizobacteria Mitigate Salt-Induced Growth Inhibition of Barley Plants by Enhancing Water and Nutrient Status. S. Afr. J. Bot. 2020, 128, 209–217. [Google Scholar] [CrossRef]
- Djebaili, R.; Pellegrini, M.; Smati, M.; Del Gallo, M.; Kitouni, M. Actinomycete Strains Isolated from Saline Soils: Plant-Growth-Promoting Traits and Inoculation Effects on Solanum lycopersicum. Sustainability 2020, 12, 4617. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Naidu, B.P.; Cameron, D.F.; Konduri, S.V. Improving Drought Tolerance of Cotton by Glycinebetaine Application and Selection. In Proceedings of the 9th Australian agronomy, Wagga Wagga, NSW, Australia, 20–23 July 1998; Available online: https://www.agronomyaustraliaproceedings.org/images/sampledata/1998/4/221naidu.pdf (accessed on 10 December 2024).
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef]
- Janardhan, A.; Kumar, A.P.; Viswanath, B.; Saigopal, D.V.R.; Narasimha, G. Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties. Biotechnol. Res. Int. 2014, 2014, 217030. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Y.; Cui, X.; Yue, P.; Li, K.; Liu, X.; Tripathi, B.M.; Chu, H. Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. Msystems 2019, 4, e00225-18. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Zhang, T.; Yin, B.; Li, R.; Sheng, Z.; Li, S. Variations in Soil Microbial Communities in Different Saline Soils under Typical populus spp. Vegetation in Alpine Region of the Qaidam Basin, NW China. Ecotoxicol. Environ. Saf. 2024, 282, 116747. [Google Scholar] [CrossRef]
- Li, X.; Wang, A.; Wan, W.; Luo, X.; Zheng, L.; He, G.; Huang, D.; Chen, W.; Huang, Q. High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. Appl. Environ. Microbiol. 2021, 87, e0136621. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Z.; Lin, Q.; Lin, Y.; Long, K.; Xie, Z.; Hu, W. Salt Stress Affects the Bacterial Communities in Rhizosphere Soil of Rice. Front. Microbiol. 2024, 15, 1505368. [Google Scholar] [CrossRef]
- Li, A.Z.; Han, X.B.; Zhang, M.X.; Zhou, Y.; Chen, M.; Yao, Q.; Zhu, H.H. Culture-Dependent and -Independent Analyses Reveal the Diversity, Structure, and Assembly Mechanism of Benthic Bacterial Community in the Ross Sea, Antarctica. Front. Microbiol. 2019, 10, 2523. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, L.; Qi, X.; Huang, J.; Han, M.; Wang, C.; Li, X.; Jiang, H. Microbial Assembly and Stress-Tolerance Mechanisms in Salt-Adapted Plants Along the Shore of a Salt Lake: Implications for Saline–Alkaline Soil Remediation. Microorganisms 2025, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Bhise, K.K.; Bhagwat, P.K.; Dandge, P.B. Plant Growth-Promoting Characteristics of Salt Tolerant Enterobacter Cloacae Strain KBPD and Its Efficacy in Amelioration of Salt Stress in Vigna radiata L. J. Plant Growth Regul. 2017, 36, 215–226. [Google Scholar] [CrossRef]
- Sharma, P. Biocontrol Strategies—Retrospect and Prospects. Indian Phytopathol. 2023, 76, 47–59. [Google Scholar] [CrossRef]
- Saleem, S.; Iqbal, A.; Ahmed, F.; Ahmad, M. Phytobeneficial and Salt Stress Mitigating Efficacy of IAA Producing Salt Tolerant Strains in Gossypium hirsutum. Saudi J. Biol. Sci. 2021, 28, 5317–5324. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, Y.; Xu, B. Mechanisms of the IAA and ACC-Deaminase Producing Strain of Trichoderma longibrachiatum T6 in Enhancing Wheat Seedling Tolerance to NaCl Stress. BMC Plant Biol. 2019, 19, 22. [Google Scholar] [CrossRef]
- El-Sayed, S.Y.; Hagab, R.H. Effect of Organic Acids and Plant Growth Promoting Rhizobacteria (PGPR) on Biochemical Content and Productivity of Wheat under Saline Soil Conditions. Middle East J. Agric. Res. 2020, 9, 227–242. [Google Scholar] [CrossRef]
- Paul, S.; Aggarwal, C.; Thakur, J.; Rathi, M.S. Effect of Salt on Growth and Plant Growth Promoting Activities of Azotobacter Chroococcum Isolated from Saline Soils. Environ. Ecol. 2014, 32, 1255–1259. [Google Scholar]
- Wang, J.; Qu, F.; Liang, J.; Yang, M.; Hu, X. Bacillus velezensis SX13 Promoted Cucumber Growth and Production by Accelerating the Absorption of Nutrients and Increasing Plant Photosynthetic Metabolism. Sci. Hortic. 2022, 301, 111151. [Google Scholar] [CrossRef]
- Sehrawat, A.; Sindhu, S.S.; Glick, B.R. Hydrogen Cyanide Production by Soil Bacteria: Biological Control of Pests and Promotion of Plant Growth in Sustainable Agriculture. Pedosphere 2022, 32, 15–38. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Anani, O.A.; Olaniyan, O.T.; Bodunrinde, R.E.; Osemwegie, O.O.; Ubi, B.E. Sustainability of Biofertilizers and Other Allied Products from Genetically Modified Microorganisms. In Biomass, Biofuels, Biochemicals: Circular Bioeconomy: Technologies for Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 363–393. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, J.; Arora, N.K. Plant Growth Promoting Bacteria for Combating Salinity Stress in Plants—Recent Developments and Prospects: A Review. Microbiol. Res. 2021, 252, 126861. [Google Scholar] [CrossRef]
- Mondal, S.; Mukherjee, S.K.; Hossain, S.T. Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects. In Modern Approaches in Waste Bioremediation; Springer International Publishing: Cham, Switzerland, 2023; pp. 29–55. [Google Scholar]
- Acharya, B.R.; Gill, S.P.; Kaundal, A.; Sandhu, D. Strategies for Combating Plant Salinity Stress: The Potential of Plant Growth-Promoting Microorganisms. Front. Plant Sci. 2024, 15, 1406913. [Google Scholar] [CrossRef]
- Oliva, G.; Di Stasio, L.; Vigliotta, G.; Guarino, F.; Cicatelli, A.; Castiglione, S. Exploring the Potential of Four Novel Halotolerant Bacterial Strains as Plant-Growth-Promoting Rhizobacteria (PGPR) under Saline Conditions. Appl. Sci. 2023, 13, 4320. [Google Scholar] [CrossRef]
- Pedron, F.; Petruzzelli, G. Influence of Arsenate Competition on Tungstate Sorption by Soil. Sustainability 2024, 16, 9363. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Lu, S.; Lou, H.; Wang, X.B.; Wang, W. The Protective Role of Potassium in the Adaptation of Pseudomonas protegens SN15-2 to Hyperosmotic Stress. Microbiol. Res. 2024, 289, 127887. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; González-Andrés, F. Bacillus as a Source of Phytohormones for Use in Agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 8629–8645. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, P.; Zhou, Y.; Hu, T.; Zhang, P.; Biology, Y.W.-P. A Proteomic Approach to Understand the Impact of Nodulation on Salinity Stress Response in Alfalfa (Medicago sativa L.). Plant Biol. 2021, 24, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Rashad, Y.; Bouqellah, N.; Hafez, M.; Abdalla, S.A.; Sleem, M.M.; Madbouly, A.K. Combined Interaction between the Diazotrophic Niallia Circulans Strain YRNF1 and Arbuscular Mycorrhizal Fungi in Promoting Growth of Eggplant and Mitigating Root Rot. Phytopathol. Mediterr. 2024, 63, 25–43. [Google Scholar] [CrossRef]
- Vasques, N.C.; Nogueira, M.A.; Hungria, M. Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil. Agronomy 2024, 14, 1654. [Google Scholar] [CrossRef]
- Chen, H.; Bullock, D.A.; Alonso, J.M.; Stepanova, A.N. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. Plants 2021, 11, 33. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Rehman, B.; Javed, J.; Rauf, M.; Khan, S.A.; Arif, M.; Hamayun, M.; Gul, H.; Khilji, S.A.; Sajid, Z.A.; Kim, W.C.; et al. ACC Deaminase-Producing Endophytic Fungal Consortia Promotes Drought Stress Tolerance in M. oleifera by Mitigating Ethylene and H2O2. Front. Plant Sci. 2022, 13, 967672. [Google Scholar] [CrossRef]
- Singh, R.P.; Pandey, D.M.; Jha, P.N.; Ma, Y. ACC Deaminase Producing Rhizobacterium enterobacter Cloacae ZNP-4 Enhance Abiotic Stress Tolerance in Wheat Plant. PLoS ONE 2022, 17, e0267127. [Google Scholar] [CrossRef]
- Ahmadzai, H.; Tutundjian, S.; Elouafi, I. Policies for Sustainable Agriculture and Livelihood in Marginal Lands: A Review. Sustainability 2021, 13, 8692. [Google Scholar] [CrossRef]
- Nurbekova, Z.; Satkanov, M.; Beisekova, M.; Akbassova, A.; Ualiyeva, R.; Cui, J.; Chen, Y.; Wang, Z.; Zhangazin, S. Strategies for Achieving High and Sustainable Plant Productivity in Saline Soil Conditions. Horticulturae 2024, 10, 878. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; Grattan, S.R.; Perdomo-González, A.; Pérez-Pérez, J.A.; Díaz-Peña, F.J. Marginal Quality Waters: Adequate Resources for Sustainable Forage Production in Saline Soils? Agric. Water Manag. 2024, 305, 109142. [Google Scholar] [CrossRef]
- Katerova, Z.; Todorova, D.; Vaseva, I.I.; Shopova, E.; Petrakova, M.; Iliev, M.; Sergiev, I. Effects of Melatonin Pre- and Post-Drought Treatment on Oxidative Stress Markers and Expression of Proline-Related Transcripts in Young Wheat Plants. Int. J. Mol. Sci. 2024, 25, 12127. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.F.; Li, M.; Liaqat, W.; Altaf, M.T.; Liu, C.; Ahmad, H.; Khan, E.H.; Ali, Z.; Barutçular, C.; Mohamed, H.I. Chlorophyll Fluorescence: A Smart Tool for Maize Improvement. Cereal Res. Commun. 2024, 53, 617–648. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The PGPR Stenotrophomonas Maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Front. Microbiol. 2017, 8, 1945. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR Inoculation on Growth and Antioxidant Status of Wheat under Saline Conditions. Plant Biol. 2012, 14, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Lugtenberg, B. Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. In Use of Microbes for the Alleviation of Soil Stresses; Springer: New York, NY, USA, 2014; Volume 1, pp. 73–96. [Google Scholar]
- Song, L.; Ding, R.; Du, T.; Kang, S.; Tong, L.; Xue, F.; Wei, Z. Stomatal Conductance Parameters of Tomatoes Are Regulated by Reducing Osmotic Potential and Pre-Dawn Leaf Water Potential via Increasing ABA under Salt Stress. Environ. Exp. Bot. 2023, 206, 105176. [Google Scholar] [CrossRef]
- Martins, S.J.; Taerum, S.J.; Triplett, L.; Emerson, J.B.; Zasada, I.; De Toledo, B.F.; Kovac, J.; Martin, K.; Bull, C.T. Predators of Soil Bacteria in Plant and Human Health. Phytobiomes J. 2022, 6, 184–200. [Google Scholar] [CrossRef]
- Arora, S.; Singh, A.K.; Singh, Y.P. (Eds.) Bioremediation of Salt Affected Soils: An Indian Perspective; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-48256-9. [Google Scholar]
- Pandey, S. Investigating the Impact of Siderophore Producing Bacteria on Iron Bioavailability in Tomato (Solanum lycopersicum L.). Ph.D. Thesis, GB Pant University of Agriculture & Technology, Tanda Range, India, 2023. [Google Scholar]
Treatments | ||
---|---|---|
A. no bacteria and no salt stress | ||
B. no bacteria and salt stress 50 mM | ||
C. no bacteria and salt stress 100 mM | ||
D. no bacteria and salt stress 200 mM | ||
E. no bacteria and salt stress 300 mM | ||
Consortium 1 | Consortium 2 | Consortium 3 |
F1. 106 CFU mL−1 bacteria and no salt stress | F2. 106 CFU mL−1 bacteria and no salt stress | F3. 106 CFU mL−1 bacteria and no salt stress |
G1. 106 CFU mL−1 bacteria and salt stress 50 mM | G2. 106 CFU mL−1 bacteria and salt stress 50 mM | G3. 106 CFU mL−1 bacteria and salt stress 50 mM |
H1. 106 CFU mL−1 bacteria and salt stress 100 mM | H2. 106 CFU mL−1 bacteria and salt stress 100 mM | H3. 106 CFU mL−1 bacteria and salt stress 100 mM |
I1. 106 CFU mL−1 bacteria and salt stress 200 mM | I2. 106 CFU mL−1 bacteria and salt stress 200 mM | I3. 106 CFU mL−1 bacteria and salt stress 200 mM |
J1. 106 CFU mL−1 bacteria and salt stress 300 mM | J2. 106 CFU mL−1 bacteria and salt stress 300 mM | J3. 106 CFU mL−1 bacteria and salt stress 300 mM |
Index | Taxa | Reads | Dominance | Simpson | Shannon | Evenness | Chao-1 |
---|---|---|---|---|---|---|---|
Value | 77 | 14,948 | 0.01985 | 0.9801 | 4.097 | 0.7815 | 77 |
NaCl Concentration | Test | PS36 | PS104 | PS154 |
---|---|---|---|---|
0 moL/L NaCl | HCN | +++ | ++ | +++ |
NH3 | + | + | + | |
Siderophores | + | − | + | |
0.25 moL/L NaCl | HCN | +++ | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + | |
0.5 moL/L NaCl | HCN | +++ | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + | |
0.75 moL/L NaCl | HCN | +++ | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + | |
1 moL/L NaCl | HCN | ++ | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + | |
1.25 moL/L NaCl | HCN | ++ | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + | |
1.5 moL/L NaCl | HCN | + | − | − |
NH3 | + | + | + | |
Siderophores | + | − | + |
Treatment | Germination (%) | Root Length (cm) | Shoot Length (cm) | Chlorophylls (mg/100 g FW) | Proline (g/g FW) |
---|---|---|---|---|---|
Consortium 1 | 91.1 ± 1.21 a | 3.87 ± 0.27 a | 4.37 ± 0.30 a | 13.32 ± 0.44 a | 2.32 ± 0.48 b |
Consortium 2 | 83.3 ± 0.15 b | 3.47 ± 0.23 b | 3.97 ± 0.29 b | 12.01 ± 0.54 b | 2.17 ± 0.38 c |
Consortium 3 | 80.7 ± 0.10 c | 3.34 ± 0.23 b | 3.84 ± 0.29 b | 11.59 ± 0.24 c | 2.11 ± 0.32 c |
No | 83.6 ± 0.06 b | 3.16 ± 0.19 b | 3.66 ± 0.15 b | 10.72 ± 0.24 d | 2.98 ± 0.51 a |
LSD-value | 1.01 | 0.37 | 0.36 | 0.32 | 0.12 |
Treatment | Germination (%) | Root Length (cm) | Shoot Length (cm) | Chlorophylls (mg/100 g FW) | Proline (g/g FW) |
---|---|---|---|---|---|
0 | 91.8 ± 0.58 a | 3.20 ± 0.44 b | 3.70 ± 0.17 b | 12.19 ± 0.74 b | 1.60 ± 0.45 c |
50 | 89.8 ± 0.58 b | 3.40 ± 0.29 b | 3.90 ± 0.17 b | 14.37 ± 0.56 a | 2.33 ± 0.67 b |
100 | 87.3 ± 0.58 c | 3.96 ± 0.17 b | 4.46 ± 0.44 a | 12.16 ± 0.92 b | 2.70 ± 0.47 a |
200 | 79.8 ± 0.58 d | 3.57 ± 0.33 ab | 4.07 ± 0.00 ab | 10.98 ± 0.24 c | 2.72 ± 0.41 a |
300 | 74.8 ± 0.58 e | 3.18 ± 0.58 b | 3.68 ± 0.33 b | 11.10 ± 0.24 c | 2.62 ± 0.93 a |
LSD-value | 1.1 | 0.42 | 0.43 | 0.35 | 0.14 |
Parameter | A | B | C | F | G | H | I | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Root Lenght | 3.10 d | 3.47 cd | 3.77 c | 6.53 a | 6.63 a | 5.23 b | 5.00 b | Significance | no | *** | *** |
LSD-value | - | 0.48 | 0.63 | ||||||||
Shoot Lenght | 4.67 cd | 3.83 d | 2.50 e | 8.00 a | 6.10 b | 5.30 bc | 3.83 d | Significance | no | *** | *** |
LSD-value | - | 0.80 | 0.63 | ||||||||
Chlorophylls | 10.39 e | 20.05 d | 43.78 b | 33.57 c | 61.80 a | 36.86 c | 20.34 d | Significance | no | *** | *** |
LSD-value | - | 2.73 | 3.62 | ||||||||
Chla/Chlb | 2.28 a | 2.03 a | 0.92 b | 2.36 a | 0.88 b | 1.99 a | 1.32 b | Significance | no | *** | *** |
LSD-value | - | 0.47 | 0.63 | ||||||||
Antioxidant activity | 25.37 d | 36.71 a | 26.84 c | 20.71 f | 28.67 b | 23.09 e | 21.65 f | Significance | no | *** | *** |
LSD-value | - | 0.87 | 1.15 | ||||||||
Proline | 7.47 e | 9.63 d | 10.24 cd | 10.89 bc | 11.55 b | 12.48 a | 9.76 d | Significance | no | *** | *** |
LSD-value | - | 0.69 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fares, R.; Khabtane, A.; Kacem Chaouche, N.; Ouanes, M.; Farda, B.; Djebaili, R.; Pellegrini, M. Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress. Microorganisms 2025, 13, 2273. https://doi.org/10.3390/microorganisms13102273
Fares R, Khabtane A, Kacem Chaouche N, Ouanes M, Farda B, Djebaili R, Pellegrini M. Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress. Microorganisms. 2025; 13(10):2273. https://doi.org/10.3390/microorganisms13102273
Chicago/Turabian StyleFares, Ramila, Abdelhamid Khabtane, Noreddine Kacem Chaouche, Miyada Ouanes, Beatrice Farda, Rihab Djebaili, and Marika Pellegrini. 2025. "Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress" Microorganisms 13, no. 10: 2273. https://doi.org/10.3390/microorganisms13102273
APA StyleFares, R., Khabtane, A., Kacem Chaouche, N., Ouanes, M., Farda, B., Djebaili, R., & Pellegrini, M. (2025). Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress. Microorganisms, 13(10), 2273. https://doi.org/10.3390/microorganisms13102273