Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Substrate
2.2. Determination of Hydrological Parameters of PGH
2.3. Microorganism and Inoculum Production
2.4. Release of Phenolic Compounds via Solid-State Fermentation
2.5. Effect of Moisture Content, Inoculum Size, and Aeration on TFC Release
2.6. Analytical Methods
2.6.1. Respirometry Analysis
2.6.2. Hydrolysable Phenols (HP)
2.6.3. Condensed Phenols (CP)
2.6.4. Antioxidant Capacity
2.6.5. Identification of Phenolic Compounds by RP-HPLC–ESI-MS
2.7. Statistical Analysis
3. Results
3.1. Hydrological Parameters of Pistachio Green Hull
3.2. Release of Phenolic Compounds via Solid-State Fermentation
3.3. Effect of Moisture Content, Inoculum Size, and Aeration on TPC Release
3.4. Identification of Phenolic Compounds by RP-HPLC–ESI-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2022, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Pakdaman, N.; Dargahi, R.; Nadi, M.; Javanshah, A.; Shakerardekani, A.; Saberi, N. Optimizing the Extraction of Phenolic Compounds from Pistachio Hulls. J. Nuts 2021, 4, 361–370. [Google Scholar] [CrossRef]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef]
- USDA. Tree Nuts: World Markets and Trade; United States Department of Agriculture: Washington, DC, USA, 2024; p. 8.
- Olvera-Bautista, M.R. Caracterización Química y Nutracéutica del Pistache (Pistacia vera L.) Tostado, así Como la Evaluación de la Bioaccesibilidad in Vitro, Permeabilidad ex Vivo y Análisis Quimioinformático in Silico. Bachelor’s Thesis, Universidad Autónoma de Querétaro, Queretaro, Mexico, 2022; p. 89. [Google Scholar]
- Martínez-Ruíz, N.R.; Rodrigo-García, J.; Corral-Díaz, B. Efecto del Secado Controlado Sobre la Calidad Nutrimental del Pistache (Pistacia vera L.) y Subproductos Producido en el Valle de Juárez, Chihuahua, México; Universidad Autónoma de Ciudad Juárez: Ciudad Juárez, Mexico, 2019; p. 22. [Google Scholar]
- Cardullo, N.; Leanza, M.; Muccilli, V.; Tringali, C. Valorization of Agri-Food Waste from Pistachio Hard Shells: Extraction of Polyphenols as Natural Antioxidants. Resources 2021, 10, 45. [Google Scholar] [CrossRef]
- Elhadef, K.; Akermi, S.; Ben Hlima, H.; Ennouri, K.; Fourati, M.; Ben Braïek, O.; Mellouli, L.; Smaoui, S. Tunisian Pistachio Hull Extracts: Phytochemical Content, Antioxidant Activity, and Foodborne Pathogen Inhibition. J. Food Qual. 2021, 2021, 9953545. [Google Scholar] [CrossRef]
- Arjeh, E.; Akhavan, H.-R.; Barzegar, M.; Carbonell-Barrachina, Á.A. Bio-active compounds and functional properties of pistachio hull: A review. Trends Food Sci. Technol. 2020, 97, 55–64. [Google Scholar] [CrossRef]
- Hamed, M.; Bougatef, H.; Karoud, W.; Krichen, F.; Haddar, A.; Bougatef, A.; Sila, A. Polysaccharides extracted from pistachio external hull: Characterization, antioxidant activity and potential application on meat as preservative. Ind. Crops Prod. 2020, 148, 112315. [Google Scholar] [CrossRef]
- Özbek, H.N.; Halahlih, F.; Göğüş, F.; Koçak Yanık, D.; Azaizeh, H. Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste Biomass Valoriz. 2018, 11, 2101–2110. [Google Scholar] [CrossRef]
- Martín-Gordo, D.A. Los Compuestos Fenólicos, Un Acercamiento A Su Biosíntesis, Síntesis Y Actividad Biológica. Rev. De Investig. Agrar. Y Ambient. 2018, 9, 81–104. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, Ö.; Carle, R.; Schweiggert, R.M. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Moreno-Rojas, J.M.; Velasco-Ruiz, I.; Lovera, M.; Ordoñez-Díaz, J.L.; Ortiz-Somovilla, V.; De Santiago, E.; Arquero, O.; Pereira-Caro, G. Evaluation of Phenolic Profile and Antioxidant Activity of Eleven Pistachio Cultivars (Pistacia vera L.) Cultivated in Andalusia. Antioxidants 2022, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Ahmadi Gavlighi, H. Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. J. Food Biochem. 2020, 44, e13208. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Beltrán, G.M.; Salazar-Garcés, D.M. Fermentación Sólida en la Industria Alimentaria. Bachelor’s Thesis, Universidad Técnica de Ambato, Ambato, Ecuador, 2021. [Google Scholar]
- Thegarathah, P.; Jewaratnam, J.; Simarani, K. Turbidity reduction in palm oil mill effluent (POME) by submerged fermentation with immobilized Aspergillus niger spores using coconut husk. IOP Conf. Ser. Earth Environ. Sci. 2022, 1074, 012027. [Google Scholar] [CrossRef]
- López-Cárdenas, F.; Ochoa-Reyes, E.; Baeza-Jiménez, R.; Tafolla-Arellano, J.C.; Ascacio-Valdés, J.A.; Buenrostro-Figueroa, J.J. Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods. Fermentation 2023, 9, 823. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Nevárez-Moorillón, G.V.; Chávez-González, M.L.; Sepúlveda, L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Pedroza-Islas, R.; Huerta-Ochoa, S.; Prado-Barragán, L.A. Improved Extraction of High Value-Added Polyphenols from Pomegranate Peel by Solid-State Fermentation. Fermentation 2023, 9, 530. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Torres-Leon, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of ellagic acid from mexican rambutan peel by solid-state fermentation-assisted extraction. Food Bioprod. Process. 2022, 134, 86–94. [Google Scholar] [CrossRef]
- Paz-Arteaga, S.L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Cadena-Chamorro, E.; Serna-Cock, L.; Aguilar-González, M.A.; Ramírez-Guzmán, N.; Torres-León, C. Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation. Innov. Food Sci. Emerg. Technol. 2023, 85, 103313. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. LWT 2019, 112, 108236. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J.A.; Huerta-Ochoa, S.; Aguilar, C.N.; Prado-Barragán, L.A. Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem. 2017, 62, 16–23. [Google Scholar] [CrossRef]
- De León-Medina, J.C.; Sepúlveda, L.; Morlett-Chávez, J.; Meléndez-Renteria, P.; Zugasti-Cruz, A.; Ascacio-Valdés, J.; Aguilar, C.N. Solid-State Fermentation with Aspergillus niger GH1 to Enhance Polyphenolic Content and Antioxidative Activity of Castilla Rose (Purshia plicata). Plants 2020, 9, 1518. [Google Scholar] [CrossRef]
- Cano y Postigo, L.O.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- Gómez Rojas, M.P.; Arboleda Valencia, J.W.; Mosquera Martínez, O.M. Género Aspergillus: Fuente potencial de péptidos bioactivos. Rev. Fac. De Cienc. Básicas 2021, 17, 73–89. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Treichel, H.; Kumar, V.; Pandey, A. Chapter 1—Advances in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–17. [Google Scholar]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef]
- Méndez-González, F.; Figueroa-Montero, A.; Saucedo-Castañeda, G.; Loera, O.; Favela-Torres, E. Addition of spherical-style packing improves the production of conidia by Metarhizium robertsii in packed column bioreactors. J. Chem. Technol. Biotechnol. 2022, 97, 1517–1525. [Google Scholar] [CrossRef]
- Méndez-González, F.; Loera, O.; Saucedo-Castañeda, G.; Buenrostro-Figueroa, J.J.; Favela-Torres, E. Improved packed bed column bioreactor to produce fungal conidia for biological control. Syst. Microbiol. Biomanuf. 2024. [Google Scholar] [CrossRef]
- Martínez-Ramírez, C.; Esquivel-Cote, R.; Ferrera-Cerrato, R.; Martínez-Ruiz, J.A.; Rodríguez-Serrano, G.; Saucedo-Castañeda, G. Solid-state culture of Azospirillum brasilense: A reliable technology for biofertilizer production from laboratory to pilot scale. Bioprocess Biosyst. Eng. 2021, 44, 1525–1538. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate Quantification of Total Phenolic Content from Plant Extracts Obtained by Conventional and Ultrasound Methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Melendez, N.P.; Nevárez-Moorillón, V.; Rodríguez-Herrera, R.; Espinoza, J.C.; Aguilar, C.N.; Obal, N. A microassay for quantification of 2, 2-diphenyl-1-picrylhydracyl (DPPH) free radical scavenging. Afr. J. Biochem. Res. 2014, 8, 14–18. [Google Scholar]
- Rojo-Gutiérrez, E.; Carrasco-Molinar, O.; Tirado-Gallegos, J.M.; Levario-Gómez, A.; Chávez-González, M.L.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J. Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. J. Food Meas. Charact. 2021, 15, 2098–2107. [Google Scholar] [CrossRef]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.; Martínez-Hernández, J.L.; Rodríguez-Herrera, R.; Aguilar, C.N. Euphorbia antisyphilitica residues as a new source of ellagic acid. Chem. Pap. 2010, 64, 528–532. [Google Scholar] [CrossRef]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.; Ascacio-Valdés, A.; Sepúlveda, L.; De la Cruz, R.; Prado-Barragán, A.; Aguilar-González, M.A.; Rodríguez, R.; Aguilar, C.N. Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. 2014, 92, 376–382. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Aguilar, C.N.; Rodrigues, L.R.; Teixeira, J.A. Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr. Res. 2009, 344, 795–800. [Google Scholar] [CrossRef]
- García-Zapata, A.M. Marco Conceptual Sobre la Influencia de la Temperatura y la Humedad Relativa en la Fermentación Sólida del Grano de Café Arábica Sobre el Contenido del Ácido 5-O-Cafeoilquínico. Doctoral Dissertation, Universidad Pontificia Bolivariana, Medellin, Colombia, 2016. [Google Scholar]
- Méndez-Alvarez, J.A. Producción de Ácido Glucónico Aplicando Cinética de Crecimiento Microbiano a Partir de Aspergillus niger y Como Medio de Cultivo, Ducle de Atado. Doctoral Dissertation, Universidad de El Salvador, San Salvador, El Salvador, 2013. [Google Scholar]
- Figueroa-Montero, A.A. Modelamiento de la Transferencia de Calor y Masa (Agua) en un Biorreactor de Charolas para Fermentación en Medio Sólido. Doctoral Dissertation, Universidad Autónoma Metropolitana, Mexico City, Mexico, 2011. [Google Scholar]
- Pirt, S.J. Maintenance energy: A general model for energy-limited and energy-sufficient growth. Arch. Microbiol. 1982, 133, 300–302. [Google Scholar] [CrossRef]
- Viniegra-González, G.; Favela-Torres, E.; Aguilar, C.N.; Rómero-Gomez, S.d.J.; Díaz-Godínez, G.; Augur, C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003, 13, 157–167. [Google Scholar] [CrossRef]
- Puspitasari, C.; Pinsirodom, P.; Wattanachaisaereekul, S. Effect of solid-state fermentation using Aspergillus oryzae and Aspergillus niger on bitter and bioactive compounds of Moringa oleifera seed flour. LWT—Food Sci. Technol. 2024, 207, 116616. [Google Scholar] [CrossRef]
- Alvarez-Agüero, C.M.; Lock de Ugaz, O. Taninos. Rev. De Química 1992, 6, 47–63. [Google Scholar]
- Vázquez-Flores, A.A.; ’Álvarez-Parrilla, E.; López-Díaz, J.A.; Wall-Medrano, A.; De la Rosa, L.A. Taninos hidrolizables y condensados: Naturaleza química, ventajas y desventajas de su consumo: Hydrolyzable and condensed tannins: Chemistry, advantages and disadvantages of their intake. Tecnociencia Chihuah. 2012, 6, 84–93. [Google Scholar] [CrossRef]
- Abbasi, S.; Vahabzadeh, F.; Mehranian, M. Profiles of Phenolics and Antioxidant Activity of Pistachio Hulls During Solid-State Fermentation by Phanerochaete chrysosporium- Involvement of Lignin Peroxidase and Manganese Peroxidase. Sci. Iran. 2007, 14, 373–378. [Google Scholar]
- Król-Grzymała, A.; Amarowicz, R. Phenolic Compounds of Soybean Seeds from Two European Countries and Their Antioxidant Properties. Molecules 2020, 25, 2075. [Google Scholar] [CrossRef]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Hze, J. Solid state fermentation effects on pistachio hulls antioxidant activities. Asia-Pac. J. Sci. Technol. 2010, 15, 360–366. [Google Scholar]
- Özbek, H.N.; Yanık, D.K.; Fadıloğlu, S.; Göğüş, F. Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Sep. Sci. Technol. 2019, 55, 289–299. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, Ö.; Carle, R.; Schweiggert, R.M. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018, 253, 46–54. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chem. 2016, 210, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Esparza, U.; Ochoa-Reyes, E.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J. Efecto de la fermentación en medio sólido sobre el contenido de fenoles totales y la capacidad antioxidante del maíz. CienciaUAT 2023, 18, 136–144. [Google Scholar] [CrossRef]
- Brück, W.M.; Díaz Escobar, V.D.; Droz-dit-Busset, L.; Baudin, M.; Nicolet, N.; Andlauer, W. Fermentative Liberation of Ellagic Acid from Walnut Press Cake Ellagitannins. Foods 2022, 11, 3102. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda-Torre, L.; Torres-León, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Solid-State Fermentation for the Recovery of Phenolic Compounds from Agro-Wastes. Resources 2023, 12, 36. [Google Scholar] [CrossRef]
- Cañedo, V.; Ames, T. Manual de laboratorio para el manejo de hongos entomopatgenos; International Potato Center (CIP): Lima, Perú, 2004. [Google Scholar]
- Martínez-Ávila, G.; Ascacio-Valdés, J.; Sepúlveda, L.; Rodriguez, R.; Aguilera-Carbo, A.; Aguilar, C. Extracción Asistida por Fermentación Fúngica de Antioxidantes Fenólicos. Acta Química Mex. 2013, 5, 16–24. [Google Scholar]
- Jachimowicz, P.; Cydzik-Kwiatkowska, A.; Szklarz, P. Effect of Aeration Mode on Microbial Structure and Efficiency of Treatment of TSS-Rich Wastewater from Meat Processing. Appl. Sci. 2020, 10, 7414. [Google Scholar] [CrossRef]
- Casciatori, F.P.; Thoméo, J.C. Heat transfer in packed-beds of agricultural waste with low rates of air flow applicable to solid-state fermentation. Chem. Eng. Sci. 2018, 188, 97–111. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, L.-R.; He, H.-W.; Sang, B.; Yu, D.-L.; Feng, J.-T.; Zhang, X. Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient. Molecules 2018, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Ridder, E.R.; Nokes, S.E.; Knutson, B.L. Optimization of Solid-State Fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran in a forced aeration system. Trans. ASAE 1999, 42, 1785–1790. [Google Scholar] [CrossRef]
- Venereo-Gutiérrez, J.R. Daño oxidativo, radicales libres y antioxidantes. Rev. Cuba. De Med. Mil. 2002, 31, 126–133. [Google Scholar]
- Ghandahari-Yazdi, A.P.; Barzegar, M.; Sahari, M.A.; Ahmadi Gavlighi, H. Optimization of the enzyme-assisted aqueous extraction of phenolic compounds from pistachio green hull. Food Sci. Nutr. 2019, 7, 356–366. [Google Scholar] [CrossRef]
- Cheng, H.S.; Ton, S.H.; Abdul Kadir, K. Ellagitannin geraniin: A review of the natural sources, biosynthesis, pharmacokinetics and biological effects. Phytochem. Rev. 2017, 16, 159–193. [Google Scholar] [CrossRef]
- Schulze-Kaysers, N.; Feuereisen, M.M.; Schieber, A. Phenolic compounds in edible species of the Anacardiaceae family—A review. RSC Adv. 2015, 5, 73301–73314. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
Factor | −1 | 0 | 1 |
---|---|---|---|
Moisture (%) | 40 | 50 | 60 |
Inoculum (sp/mL) | 1 × 106 | 5 × 106 | 1 × 107 |
Aeration (L/Kgwm min) | 0.5 | 1 | 1.5 |
Treatment | Moisture | Inoculum | Aeration |
1 | 1 | 0 | −1 |
2 | −1 | 0 | −1 |
3 | 0 | −1 | −1 |
4 | 0 | 1 | −1 |
5 | −1 | −1 | 0 |
6 | 1 | −1 | 0 |
7 | −1 | 1 | 0 |
8 | 1 | 1 | 0 |
9 | −1 | 0 | 1 |
10 | 1 | 0 | 1 |
11 | 0 | −1 | 1 |
12 | 0 | 1 | 1 |
13 | 0 | 0 | 0 |
14 | 0 | 0 | 0 |
15 | 0 | 0 | 0 |
Parameters | Results |
---|---|
Critical humidity point (%) | 0.37 ± 0.05 |
Water absorption index (g gel/gdm) | 5.73 ± 1.05 |
Maximum moisture (%) | 82.79 ± 2.77 |
Respirometric Parameter | Results |
---|---|
CO2 production (Logistic model) | |
µ (h−1) | 0.154 |
CO2o (mg/gidm) | 0.96 |
CO2max (mg/gidm) | 363.08 |
R2 adj | 0.99 |
RSS | 17,069.08 |
O2 consumption (Logistic-Pirt model) | |
O2o (mg/gidm) | 0.10 |
O2max (mg/gidm) | 217.55 |
YCO2/O2 (mgO2/mgCO2) | 1.53 ± 0.69 |
mO2 CO2max/µ (mgO2/mgCO2 h−1) | 3.86 ± −0.17 |
mO2 (mgO2/mgCO2 h−1) | 0.0016 |
R2 adj | 0.99 |
RSS | 7139.48 |
Response | HP | CP | TPC | DPPH | ABTS | FRAP |
---|---|---|---|---|---|---|
HP | - | 0.4811 * | 0.9058 * | 0.6902 * | 0.5929 * | 0.5881 * |
CP | - | 0.8071 * | −0.2210 | −0.3634 | −0.3580 | |
TPC | - | 0.3579 | 0.2236 | 0.2230 | ||
DPPH | - | 0.9600 * | 0.9839 * | |||
ABTS | - | 0.9807 * | ||||
FRAP | - |
Treatment | HP (mgGAE/gdm) | CP (mgCE/gdm) | TPC (mg/gms) | ABTS (mgTE/gdm) | DPPH (mgTE/gdm) | FRAP (mgFe2+/gdm) |
---|---|---|---|---|---|---|
Control | 14.31 ± 0.31 f | 3.80 ± 0.16 f | 18.11 ± 0.41 h | 59.31 ± 1.59 h | 76.80 ± 2.83 gh | 44.29 ± 1.59 j |
T1 | 30.16 ± 1.65 b | 6.87 ± 0.59 a | 37.03 ± 2.21 b | 110.03 ± 5.43 c | 104.20 ± 0.87 c | 532.96 ± 29.98 a |
T2 | 24.88 ± 1.30 de | 4.66 ± 0.39 e | 29.54 ± 1.65 fg | 91.65 ± 1.98 ef | 82.89 ± 3.41 f | 424.01 ± 24.74 bc |
T3 | 28.10 ± 0.84 c | 6.61 ± 0.03 a | 34.71 ± 0.84 cd | 98.37 ± 6.20 d | 83.94 ± 7.79 f | 385.70 ± 10.58 de |
T4 | 31.03 ± 0.06 b | 5.78 ± 0.02 b | 36.81 ± 0.05 b | 95.09 ± 7.05 de | 113.43 ± 3.18 b | 355.63 ± 2.30 ef |
T5 | 26.04 ± 0.52 de | 4.20 ± 0.30 f | 30.24 ± 0.24 efg | 83.39 ± 4.16 g | 85.84 ± 2.76 ef | 273.25 ± 22.02 i |
T6 | 27.69 ± 1.19 c | 5.61 ± 0.32 bc | 33.30 ± 1.50 d | 118.90 ± 2.79 b | 107.97 ± 4.46 c | 427.83 ± 13.38 bc |
T7 | 24.79 ± 0.35 de | 3.78 ± 0.18 f | 28.58 ± 0.44 g | 91.84 ± 4.45 def | 89.74 ± 1.29 e | 288.28 ± 19.06 hi |
T8 | 34.71 ± 1.04 a | 6.77 ± 0.28 a | 41.48 ± 0.99 a | 132.75 ± 4.91 a | 131.68 ± 2.49 a | 504.59 ± 8.71 a |
T9 | 26.13 ± 0.37 d | 4.05 ± 0.34 f | 30.19 ± 0.57 efg | 96.50 ± 0.79 de | 85.34 ± 2.24 ef | 326.47 ± 4.83 fg |
T10 | 24.91 ± 0.29 de | 6.49 ± 0.25 a | 31.40 ± 0.51 e | 88.13 ± 0.68 fg | 76.25 ± 2.43 gh | 314.48 ± 18.94 gh |
T11 | 28.53 ± 1.05 c | 4.82 ± 0.15 de | 33.35 ± 1.19 d | 116.09 ± 3.38 bc | 97.24 ± 1.29 d | 411.80 ± 33.53 cd |
T12 | 24.64 ± 0.96 e | 5.83 ± 0.20 b | 30.47 ± 0.94 ef | 91.18 ± 3.02 ef | 71.29 ± 2.91 h | 328.71 ± 2.77 fg |
T13 | 31.02 ± 0.72 b | 5.21 ± 0.04 cd | 36.23 ± 0.69 bc | 113.86 ± 3.02 bc | 82.39 ± 0.87 f | 441.93 ± 33.27 bc |
T14 | 30.70 ± 0.43 b | 4.67 ± 0.14 e | 35.37 ± 0.31 bc | 112.91 ± 3.72 bc | 83.86 ± 1.86 f | 429.75 ± 3.72 bc |
T15 | 30.83 ± 0.04 b | 4.98 ± 0.04 de | 35.81 ± 0.07 bc | 110.95 ± 2.61 c | 81.01 ± 2.06 fg | 452.59 ± 39.72 b |
Factor/ Measured Variables | Phenolic Content | Antioxidant Capacity | ||||
---|---|---|---|---|---|---|
HP | CP | TPC | ABTS | DPPH | FRAP | |
Moisture (%) | + | + | + | + | + | + |
Inoculum (sp/mL) | + | + NS | + | − NS | + | − NS |
Aeration (L/Kgwm min) | − | − | − | − NS | − | − |
Retention Time (min) | Mass [M-H]− (M/Z) | Compound | Family |
---|---|---|---|
5.69 | 330.9 | Gallic acid 4-O-glucoside | Hydroxybenzoic acids |
19.31 | 950.5 | Geraniin | Ellagitannins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordoñez-Cano, A.J.; Ramírez-Esparza, U.; Méndez-González, F.; Alvarado-González, M.; Baeza-Jiménez, R.; Sepúlveda-Torre, L.; Prado-Barragán, L.A.; Buenrostro-Figueroa, J.J. Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull. Microorganisms 2025, 13, 35. https://doi.org/10.3390/microorganisms13010035
Ordoñez-Cano AJ, Ramírez-Esparza U, Méndez-González F, Alvarado-González M, Baeza-Jiménez R, Sepúlveda-Torre L, Prado-Barragán LA, Buenrostro-Figueroa JJ. Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull. Microorganisms. 2025; 13(1):35. https://doi.org/10.3390/microorganisms13010035
Chicago/Turabian StyleOrdoñez-Cano, Andrés Javier, Ulises Ramírez-Esparza, Fernando Méndez-González, Mónica Alvarado-González, Ramiro Baeza-Jiménez, Leonardo Sepúlveda-Torre, Lilia Arely Prado-Barragán, and José Juan Buenrostro-Figueroa. 2025. "Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull" Microorganisms 13, no. 1: 35. https://doi.org/10.3390/microorganisms13010035
APA StyleOrdoñez-Cano, A. J., Ramírez-Esparza, U., Méndez-González, F., Alvarado-González, M., Baeza-Jiménez, R., Sepúlveda-Torre, L., Prado-Barragán, L. A., & Buenrostro-Figueroa, J. J. (2025). Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull. Microorganisms, 13(1), 35. https://doi.org/10.3390/microorganisms13010035