The Common Cold and Influenza in Children: To Treat or Not to Treat?
Abstract
:1. Common Cold or Acute Respiratory Viral Infections: Causative Agents
2. The Problem of Asymptomatic ARVI
3. The Role of the ARVI Pathogen in the Clinical Picture
4. Immune Response: Small but Important Accents
5. IFNɣ—Cytokine with Antiviral and Immunomodulatory Effects in ARVI Pathogenesis
6. Approaches to the Treatment of ARVI
7. Direct-Acting Antiviral Drugs for the Treatment of ARVI
8. Antibody-Based Drugs in the Immunoprophylaxis and Immunotherapy of ARVI
9. Antihistamine Drugs in ARVI Therapy
10. Symptomatic ARVI Treatment
Antitussives
11. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sapra, M.; Kirubanandhan, S.; Kanta, P.; Ghosh, A.; Goyal, K.; Singh, M.P.; Ratho, R.K. Respiratory viral infections other than SARS-CoV-2 among the North Indian patients presenting with acute respiratory illness during the first COVID-19 wave. Virusdisease 2022, 33, 57–64. [Google Scholar] [CrossRef]
- Kiseleva, I.; Ksenafontov, A. COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. Biology 2021, 10, 733. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Armin, S.; Yazdanpour, Z. Human bocavirus infections and co-infections with respiratory syncytial virus and Rotavirus in children with acute respiratory or gastrointestinal disease. Braz. J. Microbiol. 2020, 51, 45–51. [Google Scholar] [CrossRef]
- Eccles, R. Why is temperature sensitivity important for the success of common respiratory viruses? Rev. Med Virol. 2021, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Hwang, D.; Chiu, N.-C.; Weng, L.-C.; Liu, H.-F.; Mu, J.-J.; Liu, C.-P.; Chi, H. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. Int. J. Environ. Res. Public Health 2020, 17, 564. [Google Scholar] [CrossRef] [Green Version]
- Appak, Ö.; Duman, M.; Belet, N.; Sayiner, A.A. Viral respiratory infections diagnosed by multiplex polymerase chain reaction in pediatric patients. J. Med. Virol. 2019, 91, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Heimdal, I.; Valand, J.; Krokstad, S.B.; Moe, N.M.; Christensen, A.M.; Risnes, K.M.; Nordbø, S.A.; Døllner, H.M. Hospitalized Children With Common Human Coronavirus Clinical Impact of Codetected Respiratory Syncytial Virus and Rhinovirus. Pediatr. Infect. Dis. J. 2022, 41, e95–e101. [Google Scholar] [CrossRef] [PubMed]
- Canela, L.N.P.; de Magalhães-Barbosa, M.C.; Raymundo, C.E.; Carney, S.; Siqueira, M.M.; Prata-Barbosa, A.; da Cunha, A.J.L.A. Viral detection profile in children with severe acute respiratory infection. Braz. J. Infect. Dis. 2018, 22, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Shieh, W.-J. Human adenovirus infections in pediatric population—An update on clinico–pathologic correlation. Biomed. J. 2021, 45, 38–49. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, D.; Zhang, Y.; Wang, T.; Zhang, L.; Gu, W.; Shen, M. Epidemiological characteristics of four common respiratory viral infections in children. Virol. J. 2021, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Grochowska, M.; Ambrożej, D.; Wachnik, A.; Demkow, U.; Podsiadły, E.; Feleszko, W. The Impact of the COVID-19 Pandemic Lockdown on Pediatric Infections—A Single-Center Retrospective Study. Microorganisms 2022, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Dai, G.; Jiang, X.; Wang, T.; Sun, H.; Chen, Z.; Huang, L.; Wang, M.; Zhu, C.; Yan, Y.; et al. Clinical Characteristics of Pediatric Respiratory Tract Infection and Respiratory Pathogen Isolation During the Coronavirus Disease 2019 Pandemic. Front. Pediatr. 2022, 9, 759213. [Google Scholar] [CrossRef] [PubMed]
- Kadambari, S.; Goldacre, R.; Morris, E.; Goldacre, M.J.; Pollard, A.J. Indirect effects of the COVID-19 pandemic on childhood infection in England: Population based observational study. BMJ 2022, 376, e067519. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Lively, J.Y.; Curns, A.; Weinberg, G.A.; Halasa, N.B.; Staat, M.A.; Szilagyi, P.G.; Stewart, L.S.; McNeal, M.M.; Clopper, B.; et al. Respiratory Virus Surveillance Among Children with Acute Respiratory Illnesses—New Vaccine Surveillance Network, United States, 2016–2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1253–1259. [Google Scholar] [CrossRef]
- Rankin, D.A.; Spieker, A.J.; Perez, A.; Stahl, A.L.; Rahman, H.K.; Stewart, L.S.; Schuster, J.E.; Lively, J.Y.; Haddadin, Z.; Probst, V.; et al. Circulation of Rhinoviruses and/or Enteroviruses in Pediatric Patients With Acute Respiratory Illness Before and During the COVID-19 Pandemic in the US. JAMA Netw. Open 2023, 6, e2254909. [Google Scholar] [CrossRef]
- Tang, H.-J.; Lai, C.-C.; Chao, C.-M. Changing Epidemiology of Respiratory Tract Infection during COVID-19 Pandemic. Antibiotics 2022, 11, 315. [Google Scholar] [CrossRef]
- Asha, K.; Khanna, M.; Kumar, B. Current Insights into the Host Immune Response to Respiratory Viral Infections. Adv. Exp. Med. Biol. 2021, 1313, 59–83. [Google Scholar] [CrossRef]
- Hoy, G.; Kuan, G.; López, R.; Sánchez, N.; López, B.; Ojeda, S.; Maier, H.; Patel, M.; Wraith, S.; Meyers, A.; et al. The Spectrum of Influenza in Children. Clin. Infect. Dis. 2023, 76, e1012–e1020. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Memish, Z.A.; Altawfiq, K.J.; Pan, Q.; Schlagenhauf, P. What is the Burden of Asymptomatic Coronavirus Infections? New Microbes New Infect. 2023, 52, 101101. [Google Scholar] [CrossRef]
- Calvo, C.M.; Alcolea, S.R.; Casas, I.; Pozo, F.; Iglesias, M.B.; Gonzalez-Esguevillas, M.B.; García-García, M.M.L. A 14-year Prospective Study of Human Coronavirus Infections in Hospitalized Children: Comparison with other respiratory viruses. Pediatr. Infect. Dis. J. 2020, 39, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, G.; Gálvez, N.; Soto, J.; Andrade, C.; Kalergis, A. Bacterial and Viral Coinfections with the Human Respiratory Syncytial Virus. Microorganisms 2021, 9, 1293. [Google Scholar] [CrossRef]
- Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.C.D.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.N.; et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. USA 2019, 116, 27142–27150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobzin, Y.V.; Rychkova, S.V.; Uskov, A.N.; Skripchenko, N.V.; Fedorov, V.V. Current trends in pediatric infections in the Russian Federation. Кубанский Научный Медицинский Вестник 2020, 27, 119–133. (In Russian) [Google Scholar] [CrossRef]
- Probst, V.; Spieker, A.J.; Stopczynski, T.; Stewart, L.S.; Haddadin, Z.; Selvarangan, R.; Harrison, C.J.; Schuster, J.E.; Staat, M.A.; McNeal, M.; et al. Clinical Presentation and Severity of Adenovirus Detection Alone vs Adenovirus Co-detection With Other Respiratory Viruses in US Children With Acute Respiratory Illness from 2016 to 2018. J. Pediatr. Infect. Dis. Soc. 2022, 11, 430–439. [Google Scholar] [CrossRef]
- Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dee, K.; Goldfarb, D.M.; Haney, J.; Amat, J.A.R.; Herder, V.; Stewart, M.; Szemiel, A.M.; Baguelin, M.; Murcia, P.R. Human Rhinovirus Infection Blocks Severe Acute Respiratory Syndrome Coronavirus 2 Replication within the Respiratory Epithelium: Implications for COVID-19 Epidemiology. J. Infect. Dis. 2021, 224, 31–38. [Google Scholar] [CrossRef]
- Real-Hohn, A.; Blaas, D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021, 13, 1784. [Google Scholar] [CrossRef]
- Read, J.M.; Zimmer, S.; Vukotich, C.; Schweizer, M.L.; Galloway, D.; Lingle, C.; Yearwood, G.; Calderone, P.; Noble, E.; Quadelacy, T.; et al. Influenza and other respiratory viral infections associated with absence from school among schoolchildren in Pittsburgh, Pennsylvania, USA: A cohort study. BMC Infect. Dis. 2021, 21, 291. [Google Scholar] [CrossRef]
- Taylor, S.; Lopez, P.; Weckx, L.; Borja-Tabora, C.; Ulloa-Gutierrez, R.; Lazcano-Ponce, E.; Kerdpanich, A.; Weber, M.A.R.; Santos, A.M.D.L.; Tinoco, J.-C.; et al. Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample. J. Infect. 2017, 74, 29–41. [Google Scholar] [CrossRef]
- Heinonen, S.; Rodriguez-Fernandez, R.; Diaz, A.; Rodriguez-Pastor, S.O.; Ramilo, O.; Mejias, A. Infant Immune Response to Respiratory Viral Infections. Immunol. Allergy Clin. N. Am. 2019, 39, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, Z.; Beveridge, S.; Fernandez, K.; Rankin, D.A.; Probst, V.; Spieker, A.J.; Markus, T.M.; Stewart, L.S.; Schaffner, W.; Lindegren, M.L.; et al. Respiratory Syncytial Virus Disease Severity in Young Children. Clin. Infect. Dis. 2021, 73, e4384–e4391. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.L.; Sammons, J.S.; Mourani, P.M.; Thomas, N.J.; Yehya, N. Specific Viral Etiologies Are Associated With Outcomes in Pediatric Acute Respiratory Distress Syndrome*. Pediatr. Crit. Care Med. 2019, 20, e441–e446. [Google Scholar] [CrossRef] [PubMed]
- Ghazaly, M.M.H.; Abu Faddan, N.H.; Raafat, D.M.; Mohammed, N.A.; Nadel, S. Acute viral bronchiolitis as a cause of pediatric acute respiratory distress syndrome. Eur. J. Pediatr. 2020, 180, 1229–1234. [Google Scholar] [CrossRef]
- McIntosh, K. Proving Etiologic Relationships to Disease: Another look at the common cold coronaviruses. Pediatr. Infect. Dis. J. 2022, 41, e102–e103. [Google Scholar] [CrossRef]
- Makrinioti, H.; Hasegawa, K.; Lakoumentas, J.; Xepapadaki, P.; Tsolia, M.; Castro-Rodriguez, J.A.; Feleszko, W.; Jartti, T.; Johnston, S.L.; Bush, A.; et al. The role of respiratory syncytial virus- and rhinovirus-induced bronchiolitis in recurrent wheeze and asthma—A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2022, 33, e13741. [Google Scholar] [CrossRef]
- Coverstone, A.M.; Wang, L.; Sumino, K. beyond Respiratory Syncytial Virus and Rhinovirus in the Pathogenesis and Exacerbation of Asthma: The role of metapneumovirus, bocavirus and influenza virus. Immunol. Allergy Clin. N. Am. 2019, 39, 391–401. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Xu, Y.-J.; Guan, W.-J.; Lin, L.-F. Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: A literature review. Arch. Virol. 2018, 163, 845–853. [Google Scholar] [CrossRef]
- Decker, M.-L.; Gotta, V.; Wellmann, S.; Ritz, N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci. Rep. 2017, 7, 17842. [Google Scholar] [CrossRef] [Green Version]
- Kushnareva, M.V.; Vinogradova, T.V.; Keshishian, E.S.; Parfenov, V.V.; Koltsov, V.D.; Bragina, G.S.; Parshina, O.V.; Guseva, T.S. Specific features of the immune status and interferon system of infants. Ross. Vestnik Perinatol. Pediatr. (Russian Bull. Perinatol. Pediatr.) 2016, 3, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, C.A.; Alcântara-Neves, N.M.; Veiga, R.; Amorim, L.D.; Dattoli, V.; Mendonça, L.R.; Junqueira, S.; Genser, B.; Santos, M.; De Carvalho, L.C.P.; et al. Spontaneous Cytokine Production in Children According to Biological Characteristics and Environmental Exposures. Environ. Health Perspect. 2009, 117, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Moe, N.; Krokstad, S.; Stenseng, I.H.; Christensen, A.; Skanke, L.H.; Risnes, K.R.; Nordbø, S.A.; Døllner, H. Comparing Human Metapneumovirus and Respiratory Syncytial Virus: Viral Co-Detections, Genotypes and Risk Factors for Severe Disease. PLoS ONE 2017, 12, e0170200. [Google Scholar] [CrossRef]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef]
- Ahuja, N.; Mack, W.J.; Wu, S.; Wood, J.C.; Russell, C.J. Acute respiratory infections in hospitalised infants with congenital heart disease. Cardiol. Young 2021, 31, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Flores-Torres, A.S.; Samarasinghe, A.E. Impact of Therapeutics on Unified Immunity during Allergic Asthma and Respiratory Infections. Front. Allergy 2022, 3, 852067. [Google Scholar] [CrossRef] [PubMed]
- Stertz, S.; Hale, B.G. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol. 2021, 29, 973–982. [Google Scholar] [CrossRef]
- Fong, C.H.-Y.; Lu, L.; Chen, L.-L.; Yeung, M.-L.; Zhang, A.J.; Zhao, H.; Yuen, K.-Y.; To, K.K.-W. Interferon-gamma inhibits influenza A virus cellular attachment by reducing sialic acid cluster size. iScience 2022, 25, 104037. [Google Scholar] [CrossRef]
- Tovo, P.-A.; Garazzino, S.; Daprà, V.; Pruccoli, G.; Calvi, C.; Mignone, F.; Alliaudi, C.; Denina, M.; Scolfaro, C.; Zoppo, M.; et al. COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. Int. J. Mol. Sci. 2021, 22, 7481. [Google Scholar] [CrossRef]
- Essaidi-Laziosi, M.; Geiser, J.; Huang, S.; Constant, S.; Kaiser, L.; Tapparel, C. Interferon-Dependent and Respiratory Virus-Specific Interference in Dual Infections of Airway Epithelia. Sci. Rep. 2020, 10, 10246. [Google Scholar] [CrossRef]
- Kang, S.; Brown, H.M.; Hwang, S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw. 2018, 18, e33. [Google Scholar] [CrossRef]
- Walker, F.C.; Sridhar, P.R.; Baldridge, M.T. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol. 2021, 42, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Todorović-Raković, N.; Whitfield, J.R. Between immunomodulation and immunotolerance: The role of IFNγ in SARS-CoV-2 disease. Cytokine 2021, 146, 155637. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Li, Y.; Chen, D.; Su, J.; Han, N.; Chen, H.; Ning, Z.; Xiao, M.; Zhao, M.; Zhu, B. Changes of Host Immunity Mediated by IFN-γ+ CD8+ T Cells in Children with Adenovirus Pneumonia in Different Severity of Illness. Viruses 2021, 13, 2384. [Google Scholar] [CrossRef]
- Decker, M.-L.; Grobusch, M.P.; Ritz, N. Influence of Age and Other Factors on Cytokine Expression Profiles in Healthy Children—A Systematic Review. Front. Pediatr. 2017, 5, 255. [Google Scholar] [CrossRef] [PubMed]
- Clementi, N.; Ghosh, S.; De Santis, M.; Castelli, M.; Criscuolo, E.; Zanoni, I.; Clementi, M.; Mancini, N. Viral Respiratory Pathogens and Lung Injury. Clin. Microbiol. Rev. 2021, 34, e00103-20. [Google Scholar] [CrossRef] [PubMed]
- DeGeorge, K.C.; Ring, D.J.; Dalrymple, S.N. Treatment of the common cold. Am. Fam. Physician 2019, 100, 281–289. [Google Scholar]
- Uyeki, T.M.; Bernstein, H.H.; Bradley, J.S.; Englund, J.A.; File, T.M.; Fry, A.M.; Gravenstein, S.; Hayden, F.G.; Harper, S.A.; Hirshon, J.M.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin. Infect. Dis. 2019, 68, 895–902. [Google Scholar] [CrossRef]
- FDA Recommendations Regarding the Treatment of Common Cold in Children. Available online: https://www.fda.gov/drugs/special-features/use-caution-when-giving-cough-and-cold-products-kids (accessed on 15 January 2023).
- Reviakina, V.A.; Astaf’eva, N.G.; Geppe, N.A.; Kaliuzhin, O.V. Updated PRIMA consensus document to assist the practicing physician. Pediatr. (Suppl. Cons. Med.) 2021, 2, 109–112. [Google Scholar] [CrossRef]
- Jefferson, T.; Jones, M.A.; Doshi, P.; Del Mar, C.B.; Hama, R.; Thompson, M.J.; Spencer, E.A.; Onakpoya, I.J.; Mahtani, K.R.; Nunan, D.; et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst. Rev. 2014, 2014, CD008965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirley, M. Baloxavir Marboxil: A Review in Acute Uncomplicated Influenza. Drugs 2020, 80, 1109–1118. [Google Scholar] [CrossRef]
- Jordan, P.C.; Stevens, S.K.; Deval, J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir. Chem. Chemother. 2018, 26, 2040206618764483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrahman, Z.; Li, M.; Wang, X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front. Immunol. 2020, 11, 552909. [Google Scholar] [CrossRef]
- Moodley, A.; Bradley, J.S.; Kimberlin, D.W. Antiviral treatment of childhood influenza: An update. Curr. Opin. Pediatr. 2018, 30, 438–447. [Google Scholar] [CrossRef]
- Bragstad, K.; Hungnes, O.; Litleskare, I.; Nyrerød, H.C.; Dorenberg, D.H.; Hauge, S.H. Community spread and late season increased incidence of oseltamivir-resistant influenza A(H1N1) viruses in Norway 2016. Influenza Other Respir. Viruses 2019, 13, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Perez, J.; Schafer, A.; Cheng, H.; Peet, N.; Rong, L.; Manicassamy, B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018, 25, 5115–5127. [Google Scholar] [CrossRef] [PubMed]
- Arabi, H.; Zaid, A.A.; Alreefi, M.; Alahmed, S. Suspected Oseltamivir-induced bradycardia in a pediatric patient: A case report from King Abdullah Specialist Children’s Hospital, Riyadh, Saudi Arabia. Clin. Pract. 2018, 8, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.; Qi, L.; Zhou, N.; Li, C. Case report on alimentary tract hemorrhage and liver injury after therapy with oseltamivir: A case report. Medicine 2018, 97, e12497. [Google Scholar] [CrossRef]
- Behzadi, M.A.; Leyva-Grado, V.H. Overview of Current Therapeutics and Novel Candidates against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front. Microbiol. 2019, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, B.E.; Sayce, A.C.; Warfield, K.L.; Miller, J.L.; Zitzmann, N. Iminosugars: Promising therapeutics for influenza infection. Crit. Rev. Microbiol. 2017, 43, 521–545. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, E.G.; Munoz, F.M. A review of therapeutics in clinical development for respiratory syncytial virus and influenza in children. Clin. Ther. 2018, 40, 1268–1281. [Google Scholar] [CrossRef] [Green Version]
- Kotey, E.; Lukosaityte, D.; Quaye, O.; Ampofo, W.; Awandare, G.; Iqbal, M. Current and Novel Approaches in Influenza Management. Vaccines 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Lei, C.; Hu, D.; Dimitrov, D.S.; Ying, T. Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front. Med. 2017, 11, 462–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, C.M. Antibody immunoprophylaxis and immunotherapy for influenza virus infection: Utilization of monoclonal or polyclonal antibodies? Hum. Vaccines Immunother. 2018, 14, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, C.; Lu, X.; Ling, Z.; Yi, C.; Zhang, Z.; Li, Z.; Jin, M.; Wang, W.; Tang, S.; et al. Unique binding pattern for a lineage of human antibodies with broad reactivity against influenza A virus. Nat. Commun. 2022, 13, 2378. [Google Scholar] [CrossRef]
- Sun, M.; Lai, H.; Na, F.; Li, S.; Qiu, X.; Tian, J.; Zhang, Z.; Ge, L. Monoclonal Antibody for the Prevention of Respiratory Syncytial Virus in Infants and Children: A systematic review and network meta-analysis. JAMA Netw. Open 2023, 6, e230023. [Google Scholar] [CrossRef]
- Ananworanich, J.; Heaton, P.M. Bringing Preventive RSV Monoclonal Antibodies to Infants in Low- and Middle-Income Countries: Challenges and Opportunities. Vaccines 2021, 9, 961. [Google Scholar] [CrossRef]
- Sanders, S.L.; Agwan, S.; Hassan, M.; Van Driel, M.L.; Del Mar, C.B. Immunoglobulin treatment for hospitalised infants and young children with respiratory syncytial virus infection. Cochrane Database Syst. Rev. 2019, 8, CD009417. [Google Scholar] [CrossRef]
- Geppe, N.; Zaplatnikov, A.L.; Kondyurina, E.G.; Afanasieva, O.I.; Pshenichnaya, N.; Blokhin, B.M.; Kaira, A.N.; Dondurey, E.A. Efficacy and safety of Anaferon for children and Anaferon for the prevention and treatment of influenza and other acute respiratory viral infec-tions: Systematic review and meta-analysis. RMJ Med. Rev. 2021, 5, 335–347. (In Russian) [Google Scholar] [CrossRef]
- Gorelov, A.V.; Geppe, N.; Blokhin, B.; Zaitsev, A.; Usenko, D.; Nikolaeva, S.; Nikiforov, V.; Skuchalina, L.; Shamiyev, F.; Central Research Institute of Epidemiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation; et al. Impact of immunomodulation therapy on the course of acute viral respiratory infections: A meta-analysis of clinical trials assessing the efficacy and safety of Ergoferon in the treatment of influenza and other acute respiratory viral infections. Clin. Pract. Pediatr. 2021, 16, 83–97. [Google Scholar] [CrossRef]
- Guthmiller, J.J.; Lan, L.Y.-L.; Fernández-Quintero, M.L.; Han, J.; Utset, H.A.; Bitar, D.J.; Hamel, N.J.; Stovicek, O.; Li, L.; Tepora, M.; et al. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity 2020, 53, 1230–1244. [Google Scholar] [CrossRef]
- Wesley, A.; Burks, M.D. Immune Tolerance/in Middleton’s Allergy: Principles and Practice. 2020. Available online: https/www.sciencedirect.com/topics/neuroscience/histamine-h1-receptor (accessed on 15 January 2023).
- De Sutter, A.I.; Saraswat, A.; van Driel, M.L. Antihistamines for the common cold. Cochrane Database Syst. Rev. 2015, 11, CD009345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sutter, A.I.; Eriksson, L.; van Driel, M.L. Oral antihistamine-decongestant-analgesic combinations for the common cold. Cochrane Database Syst. Rev. 2022, 1, CD004976. [Google Scholar] [CrossRef] [PubMed]
- WHO Model List of Essential Medicines for Children. 5th List (April 2015) (Last Amended 8th List 2021). Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.03 (accessed on 15 January 2023).
- Jaume, F.; Valls-Mateus, M.; Mullol, J. Common Cold and Acute Rhinosinusitis: Up-to-Date Management in 2020. Curr. Allergy Asthma Rep. 2020, 20, 28. [Google Scholar] [CrossRef]
- McGann, K.A.; Long, S.S. Respiratory Tract Symptom Complexes. In Principles and Practice of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 164–172.e2. [Google Scholar] [CrossRef]
- King, D.; Mitchell, B.; Williams, C.P.; Spurling, G.K. Saline nasal irrigation for acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015, 4, CD006821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, D.E. The Common Cold—Clinical syndromes and cardinal features of infectious diseases: Approach to diagnosis and initial management. In Principles and Practice of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 199–202.e1. [Google Scholar] [CrossRef]
- National Institutes of Health. National Library of Medicine. Common Colds: Overview Last Update: 8 October 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279543/ (accessed on 15 January 2023).
- BMJ Best Practice. Common Cold—Guidelines. Update: 29 March 2022. Available online: https://bestpractice.bmj.com/topics/en-gb/252/guidelines (accessed on 15 January 2023).
- Malesker, M.A.; Callahan-Lyon, P.; Ireland, B.; Irwin, R.S.; Adams, T.M.; Altman, K.W.; Azoulay, E.; Barker, A.F.; Birring, S.S.; Blackhall, F.; et al. Pharmacologic and Nonpharmacologic Treatment for Acute Cough Associated With the Common Cold. Chest 2017, 152, 1021–1037. [Google Scholar] [CrossRef] [Green Version]
- Geppe, N.A.; Kondyurina, E.G.; Galustyan, A.N.; Again, T.E.; Balcerovich, N.B.; Zhiglinskaya, O.C.; Kamaev, A.C.; Lazareva, S.D.; Lalako, S.L.; Melnikova, E.M.; et al. New possibilities of effective cough therapy in acute respiratory infections in children. Lechachy Vrach 2017, 10, 25–33. (In Russian) [Google Scholar]
- Geppe, N.A.; Spasskii, A.A. The results of the All–Russian Observational Program for the Study of Rengalin in Outpatient Management of Cough (REAL). Therapy 2018, 3, 134–143. (In Russian) [Google Scholar]
- Snelson, E.; Roland, D.; Munro, A.P.S. Throat and ear infections in children: URTI in the time of COVID-19. Arch. Dis. Child.-Educ. Pract. Ed. 2020, 106, 172–174. [Google Scholar] [CrossRef]
- Thomas, M.; Bomar, P.A. Upper Respiratory Tract Infection. 30 June 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532961/ (accessed on 15 January 2023).
- Centers for Disease Control and Prevention. Antibiotic Prescribing and Use: Common Cold. Available online: https://www.cdc.gov/antibiotic-use/colds.htm (accessed on 15 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geppe, N.A.; Zaplatnikov, A.L.; Kondyurina, E.G.; Chepurnaya, M.M.; Kolosova, N.G. The Common Cold and Influenza in Children: To Treat or Not to Treat? Microorganisms 2023, 11, 858. https://doi.org/10.3390/microorganisms11040858
Geppe NA, Zaplatnikov AL, Kondyurina EG, Chepurnaya MM, Kolosova NG. The Common Cold and Influenza in Children: To Treat or Not to Treat? Microorganisms. 2023; 11(4):858. https://doi.org/10.3390/microorganisms11040858
Chicago/Turabian StyleGeppe, Natalia A., Andrey L. Zaplatnikov, Elena G. Kondyurina, Maria M. Chepurnaya, and Natalia G. Kolosova. 2023. "The Common Cold and Influenza in Children: To Treat or Not to Treat?" Microorganisms 11, no. 4: 858. https://doi.org/10.3390/microorganisms11040858