Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems
Abstract
:1. Introduction
2. Individual and Group Antimicrobial Use in Surplus Calf Production
2.1. Common Antimicrobials Used in Surplus Calf Production
2.2. Quantification of Antimicrobial Use in Surplus Dairy Calves
2.3. Major Risk Factors Associated with Antimicrobial Use in Surplus Calf Production
3. Surplus Calf Production System as Reservoirs of Major Antimicrobial Resistant Pathogens
3.1. Bovine Respiratory Pathogens Play a Key Role in Overall Antimicrobial Use and Antimicrobial Resistance
3.2. Enteric Bacteria in Surplus Calves Contribute to Antimicrobial Resistance Burden
3.3. Major AMR Foodborne Pathogens Recovered from Meat from Surplus Calves
4. Antimicrobial Resistance Control Strategies Focused on Reduced Antimicrobial Use in Surplus Calf Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309. [Google Scholar] [CrossRef] [PubMed]
- Acar, J.F.; Moulin, G. Antimicrobial Resistance at Farm Level. Rev. Sci. Tech. 2006, 25, 775–792. [Google Scholar] [CrossRef] [PubMed]
- Salaheen, S.; Kim, S.W.; Hovingh, E.; Kessel, J.A.S.; Haley, B.J. Metagenomic Analysis of the Microbial Communities and Resistomes of Veal Calf Feces. Front. Microbiol. 2021, 11, 3342. [Google Scholar] [CrossRef]
- Creutzinger, K.; Pempek, J.; Habing, G.; Proudfoot, K.; Locke, S.; Wilson, D.; Renaud, D. Perspectives on the Management of Surplus Dairy Calves in the United States and Canada. Front. Vet. Sci. 2021, 8, 661453. [Google Scholar] [CrossRef]
- Ettema, J.F.; Thomasen, J.R.; Hjortø, L.; Kargo, M.; Østergaard, S.; Sørensen, A.C. Economic Opportunities for Using Sexed Semen and Semen of Beef Bulls in Dairy Herds. J. Dairy Sci. 2017, 100, 4161–4171. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, G.; Baillargeon, P.; Higgins, R.; Paré, J.; Fortin, M. Bacterial Contamination of Colostrum Fed to Newborn Calves in Québec Dairy Herds. Can. Vet. J. 2002, 43, 523. [Google Scholar]
- Hall, J.B.; Roberts Lew, M.C.; Smith, W.K.; Shivley, C.B.; Urie, N.; Lombard, J.E. 1210 Management of Dairy Bull Calves on U.S. Dairy Operations. J. Anim. Sci. 2016, 94, 581. [Google Scholar] [CrossRef]
- Renaud, D.; Steele, M.; Genore, R.; Roche, S.; Winder, C. Passive Immunity and Colostrum Management Practices on Ontario Dairy Farms and Auction Facilities: A Cross-Sectional Study. J. Dairy Sci. 2020, 103, 8369–8377. [Google Scholar] [CrossRef]
- Wilson, D.J.; Stojkov, J.; Renaud, D.L.; Fraser, D. Risk Factors for Poor Health Outcomes for Male Dairy Calves Undergoing Transportation in Western Canada. Can. Vet. J. 2020, 61, 1265. [Google Scholar]
- Ballou, M.A.; Cobb, C.J.; Earleywine, T.J.; Obeidat, B.S. Breed and Plane of Milk-Replacer Nutrition Influence the Performance of Pre-and Postweaned Dairy Calves. Prof. Anim. Sci. 2013, 29, 116–123. [Google Scholar] [CrossRef]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; Keyserlingk, M.A.G.; Weary, D.M. The Effect of Milk Allowance on Behavior and Weight Gains in Dairy Calves. J. Dairy Sci. 2017, 100, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.; Pardon, B. Preparing Male Dairy Calves for the Veal and Dairy Beef Industry. Vet. Clin. N. Am.-Food Anim. Pract. 2022, 38, 77–92. [Google Scholar] [CrossRef]
- USDA. Dairy Heifer Raiser, 2011: An Overview of Operations that Specialize in Raising Dairy Heifers. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairyheifer11/HeiferRaiser_1.pdf (accessed on 22 April 2021).
- Lardé, H.; Dufour, S.; Archambault, M.; Massé, J.; Roy, J.P.; Francoz, D. An Observational Cohort Study on Antimicrobial Usage on Dairy Farms in Quebec, Canada. J. Dairy Sci. 2021, 104, 1864–1880. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.; Léger, D.; Dufour, S.; Sheldon, A.; Scholl, D.; Barkema, H. Antimicrobial Use on Canadian Dairy Farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Quantification of Antimicrobial Usage in Adult Cows and Preweaned Calves on 40 Large Wisconsin Dairy Farms Using Dose-Based and Mass-Based Metrics. J. Dairy Sci. 2021, 104, 4727–4745. [Google Scholar] [CrossRef] [PubMed]
- Waldner, C.L.; Parker, S.; Gow, S.; Wilson, D.J.; Campbell, J.R. Antimicrobial Usage in Western Canadian Cow-Calf Herds. Can. Vet. J. 2019, 60, 255. [Google Scholar]
- Cheng, Y.; Almeida, B.G.; Pempek, J.A.; Masterson, M.A.; Habing, G.G. The Use of Common Antimicrobial Agents in US Veal Calves. Zoonoses Pub. Health 2022, 64, 359–369. [Google Scholar] [CrossRef]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; Bleecker, K.; Deprez, P. Prospective Study on Quantitative and Qualitative Antimicrobial and Anti-Inflammatory Drug Use in White Veal Calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef]
- Bokma, J.; Boone, R.; Deprez, P.; Pardon, B. Risk Factors for Antimicrobial Use in Veal Calves and the Association with Mortality. J. Dairy Sci. 2019, 102, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Mallioris, P.; Dohmen, W.; Luiken, R.E.C.; Wagenaar, J.A.; Stegeman, A.; Mughini-Gras, L. Factors Associated with Antimicrobial Use in Pig and Veal Calf Farms in the Netherlands: A Multi-Method Longitudinal Data Analysis. Prev. Vet. Med. 2022, 199, 105563. [Google Scholar] [CrossRef]
- Jarrige, N.; Cazeau, G.; Morignat, E.; Chanteperdrix, M.; Gay, E. Quantitative and Qualitative Analysis of Antimicrobial Usage in White Veal Calves in France. Prev. Vet. Med. 2017, 144, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Fertner, M.; Toft, N.; Martin, H.L.; Boklund, A. A Register-Based Study of the Antimicrobial Usage in Danish Veal Calves and Young Bulls. Prev. Vet. Med. 2016, 131, 41–47. [Google Scholar] [CrossRef]
- Sandelin, A.; Hälli, O.; Härtel, H.; Herva, T.; Kaartinen, L.; Tuunainen, E.; Rautala, H.; Soveri, T.; Simojoki, H. Effect of Farm Management Practices on Morbidity and Antibiotic Usage on Calf Rearing Farms. Antibiotics 2022, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Kelton, D.F.; Duffield, T.F.; Renaud, D.L. Risk Factors Identified on Arrival Associated with Morbidity and Mortality at a Grain-Fed Veal Facility: A Prospective, Single-Cohort Study. J. Dairy Sci. 2019, 102, 9224–9235. [Google Scholar] [CrossRef] [PubMed]
- Schinwald, M.; Creutzinger, K.; Keunen, A.; Winder, C.B.; Haley, D.; Renaud, D.L. Predictors of Diarrhea, Mortality, and Weight Gain in Male Dairy Calves. J. Dairy Sci. 2022, 105, 5296–5309. [Google Scholar] [CrossRef] [PubMed]
- Buss, L.N.; Yohe, T.T.; Cangiano, L.R.; Renaud, D.L.; Keunen, A.J.; Guan, L.L.; Steele, M.A. The Effect of Neomycin Inclusion in Milk Replacer on the Health, Growth, and Performance of Male Holstein Calves during Preweaning. J. Dairy Sci. 2021, 104, 8188–8201. [Google Scholar] [CrossRef]
- Habing, G.; Djordjevic, C.; Schuenemann, G.M.; Lakritz, J. Understanding Antimicrobial Stewardship: Disease Severity Treatment Thresholds and Antimicrobial Alternatives among Organic and Conventional Calf Producers. Prev. Vet. Med. 2016, 130, 77–85. [Google Scholar] [CrossRef]
- Uyama, T.; Kelton, D.F.; Morrison, E.I.; Jong, E.; McCubbin, K.D.; Barkema, H.W.; Dufour, S.; Sanchez, J.; Heider, L.C.; LeBlanc, S.J.; et al. Cross-Sectional Study of Antimicrobial Use and Treatment Decision for Preweaning Canadian Dairy Calves. JDS Commun. 2022, 3, 72–77. [Google Scholar] [CrossRef]
- Pempek, J.; Masterson, M.; Portillo-Gonzalez, R.; Creutzinger, K.; Cheng, T.-Y.; Habing, G. The Impact of Antimicrobial Stewardship Training on Calf Producers Knowledge, Treatment Behaviors and Quantified Antimicrobial Use. Microorganisms 2022, 10, 1525. [Google Scholar] [CrossRef]
- Lava, M.; Pardon, B.; Schüpbach-Regula, G.; Keckeis, K.; Deprez, P.; Steiner, A.; Meylan, M. Effect of Calf Purchase and Other Herd-Level Risk Factors on Mortality, Unwanted Early Slaughter, and Use of Antimicrobial Group Treatments in Swiss Veal Calf Operations. Prev. Vet. Med. 2016, 126, 81–88. [Google Scholar] [CrossRef]
- Gay, E.; Bour, M.; Cazeau, G.; Jarrige, N.; Martineau, C.; Madec, J.Y.; Haenni, M. Antimicrobial Usages and Antimicrobial Resistance in Commensal Escherichia Coli from Veal Calves in France: Evolution during the Fattening Process. Front. Microbiol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Critically Important Antimicrobials for Human Medicine 3rd Revision 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/77376/9789241504485_eng.pdf;jsessionid=E257391C432A4141F5496157F269EC75?sequence=1 (accessed on 4 August 2022).
- Bokma, J.; Boone, R.; Deprez, P.; Pardon, B. Short Communication: Herd-Level Analysis of Antimicrobial Use and Mortality in Veal Calves: Do Herds with Low Usage Face Higher Mortality? J. Dairy Sci. 2020, 103, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Bosman, A.B.; Wagenaar, J.; Stegeman, A.; Vernooij, H.; Mevius, D. Quantifying Antimicrobial Resistance at Veal Calf Farms. PLoS ONE 2012, 7, e44831. [Google Scholar] [CrossRef] [PubMed]
- Lardé, H.; Dufour, S.; Archambault, M.; Léger, D.; Loest, D.; Roy, J.P.; Francoz, D. Assignment of Canadian Defined Daily Doses and Canadian Defined Course Doses for Quantification of Antimicrobial Usage in Cattle. Front. Vet. Sci. 2020, 7, 10. [Google Scholar] [CrossRef]
- Catry, B.; Chauvin, C.; Greko, C.; Heederik, D.; Jacobsen, E.; Geijlswijk, I.; Mcewen, S.; Müntener, C.; Litleskare, I. Revised ESVAC Reflection Paper on Collecting Data on Consumption of Antimicrobial Agents per Animal Species, on Technical Units of Measurement and Indicators for Reporting Consumption of Antimicrobial Agents in Animals. 2013. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/revised-european-surveillance-veterinary-antimicrobial-consumption-esvac-reflection-paper-collecting_en.pdf (accessed on 4 August 2022).
- González Pereyra, V.; Pol, M.; Pastorino, F.; Herrero, A. Quantification of Antimicrobial Usage in Dairy Cows and Preweaned Calves in Argentina. Prev. Vet. Med. 2015, 122, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Hyde, R.M.; Remnant, J.G.; Bradley, A.J.; Breen, J.E.; Hudson, C.D.; Davies, P.L.; Clarke, T.; Critchell, Y.; Hylands, M.; Linton, E.; et al. Quantitative Analysis of Antimicrobial Use on British Dairy Farms. Vet. Rec. 2017, 181, 683. [Google Scholar] [CrossRef]
- Stevens, M.; Piepers, S.; Supré, K.; Vliegher, S. Antimicrobial Consumption on Dairy Herds and Its Association with Antimicrobial Inhibition Zone Diameters of Non-Aureus Staphylococci and Staphylococcus Aureus Isolated from Subclinical Mastitis. J. Dairy Sci. 2018, 101, 3311–3322. [Google Scholar] [CrossRef]
- Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Opsomer, G.; Kruif, A.; Haesebrouck, F. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract. PLoS ONE 2016, 11, e0146488. [Google Scholar] [CrossRef]
- Schnyder, P.; Schönecker, L.; Schüpbach-Regula, G.; Meylan, M. Effects of Management Practices, Animal Transport and Barn Climate on Animal Health and Antimicrobial Use in Swiss Veal Calf Operations. Prev. Vet. Med. 2019, 167, 146–157. [Google Scholar] [CrossRef]
- Brscic, M.; Leruste, H.; Heutinck, L.F.M.; Bokkers, E.A.M.; Wolthuis-Fillerup, M.; Stockhofe, N.; Gottardo, F.; Lensink, B.J.; Cozzi, G.; Reenen, C.G. Prevalence of Respiratory Disorders in Veal Calves and Potential Risk Factors. J. Dairy Sci. 2012, 95, 2753–2764. [Google Scholar] [CrossRef]
- Rot, C.; Creutzinger, K.; Goetz, H.; Winder, C.; Morrison, J.; Conboy, M.; Bajus, A.; Renaud, D.L. Factors Associated with Body Weight of Young Surplus Dairy Calves on Arrival to a Calf Rearing Facility. Prev. Vet. Med. 2022, 203, 105630. [Google Scholar] [CrossRef]
- Marcato, F.; Brand, H.; Kemp, B.; Engel, B.; Wolthuis-Fillerup, M.; Reenen, K. Effects of Pretransport Diet, Transport Duration, and Type of Vehicle on Physiological Status of Young Veal Calves. J. Dairy Sci. 2020, 103, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Ferguson, S.; Haley, D.B.; Kelton, D.F. Risk Factors Associated with Mortality at a Milk-Fed Veal Calf Facility: A Prospective Cohort Study. J. Dairy Sci. 2018, 101, 2659–2668. [Google Scholar] [CrossRef]
- Goetz, H.M.; Kelton, D.F.; Costa, J.H.C.; Winder, C.B.; Renaud, D.L. Identification of Biomarkers Measured upon Arrival Associated with Morbidity, Mortality, and Average Daily Gain in Grain-Fed Veal Calves. J. Dairy Sci. 2021, 104, 874–885. [Google Scholar] [CrossRef]
- Bähler, C.; Steiner, A.; Luginbühl, A.; Ewy, A.; Posthaus, H.; Strabel, D.; Kaufmann, T.; Regula, G. Risk Factors for Death and Unwanted Early Slaughter in Swiss Veal Calves Kept at a Specific Animal Welfare Standard. Res. Vet. Sci. 2012, 92, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Linton, A.H.; Howe, K.; Osborne, A.D. The Effects of Feeding Tetracycline, Nitrovin and Quindoxin on the Drug-Resistance of Coli-Aerogenes Bacteria from Calves and Pigs. J. Appl. Bacteriol. 1975, 38, 255–275. [Google Scholar] [CrossRef]
- Graveland, H.; Wagenaar, J.A.; Heesterbeek, H.; Mevius, D.; Duijkeren, E.; Heederik, D. Methicillin Resistant Staphylococcus Aureus ST398 in Veal Calf Farming: Human MRSA Carriage Related with Animal Antimicrobial Usage and Farm Hygiene. PLoS ONE 2010, 5, e10990. [Google Scholar] [CrossRef]
- Dorado-García, A.; Bos, M.E.H.; Graveland, H.; Cleef, B.A.G.L.; Verstappen, K.M.; Kluytmans, J.A.J.W.; Wagenaar, J.A.; Heederik, D.J.J. Risk Factors for Persistence of Livestock-Associated MRSA and Environmental Exposure in Veal Calf Farmers and Their Family Members: An Observational Longitudinal Study. BMJ Open 2013, 3, e003272. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Nichols, M.; Gollarza, L.; Sockett, D.; Aulik, N.; Patton, E.; Francois Watkins, L.K.; Gambino-Shirley, K.J.; Folster, J.P.; Chen, J.C.; Tagg, K.A.; et al. Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Dairy Calf Exposure, United States, 2015–2018. Foodborne Pathog. Dis. 2022, 19, 199–208. [Google Scholar] [CrossRef]
- Pardon, B.; Bleecker, K.; Dewulf, J.; Callens, J.; Boyen, F.; Catry, B.; Deprez, P. Prevalence of Respiratory Pathogens in Diseased, Non-Vaccinated, Routinely Medicated Veal Calves. Vet. Rec. 2011, 169, 278. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Haesebrouck, F.; Vliegher, S.; Feyen, B.; Vanrobaeys, M.; Opsomer, G.; Schwarz, S.; Kruif, A. Variability in Acquired Resistance of Pasteurella and Mannheimia Isolates from the Nasopharynx of Calves, with Particular Reference to Different Herd Types. Microb. Drug Resist. 2005, 11, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Laevens, H.; Devriese, L.A.; Opsomer, G.; Kruif, A. Antimicrobial Resistance in Livestock. J. Vet. Pharmacol. Ther. 2003, 26, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Chakravarty, A.K. Disease Resistance for Different Livestock Species. Genet. Breed. Dis. Resist. Livest. 2020, 271–296. [Google Scholar] [CrossRef]
- Schönecker, L.; Schnyder, P.; Schüpbach-Regula, G.; Meylan, M.; Overesch, G. Prevalence and Antimicrobial Resistance of Opportunistic Pathogens Associated with Bovine Respiratory Disease Isolated from Nasopharyngeal Swabs of Veal Calves in Switzerland. Prev. Vet. Med. 2020, 185, 105182. [Google Scholar] [CrossRef]
- Schönecker, L.; Schnyder, P.; Overesch, G.; Schüpbach-Regula, G.; Meylan, M. Associations between Antimicrobial Treatment Modalities and Antimicrobial Susceptibility in Pasteurellaceae and E. Coli Isolated from Veal Calves under Field Conditions. Vet. Microbiol. 2019, 236, 108363. [Google Scholar] [CrossRef]
- Heuvelink, A.; Reugebrink, C.; Mars, J. Antimicrobial Susceptibility of Mycoplasma Bovis Isolates from Veal Calves and Dairy Cattle in the Netherlands. Vet. Microbiol. 2016, 189, 1–7. [Google Scholar] [CrossRef]
- Bokma, J.; Gille, L.; Bleecker, K.; Callens, J.; Haesebrouck, F.; Pardon, B.; Boyen, F. Antimicrobial Susceptibility of Mycoplasma Bovis Isolates from Veal, Dairy and Beef Herds. Antibiotics 2020, 9, 882. [Google Scholar] [CrossRef]
- Rérat, M.; Albini, S.; Jaquier, V.; Hüssy, D. Bovine Respiratory Disease: Efficacy of Different Prophylactic Treatments in Veal Calves and Antimicrobial Resistance of Isolated Pasteurellaceae. Prev. Vet. Med. 2012, 103, 265–273. [Google Scholar] [CrossRef]
- Vogel, G.; Nicolet, J.; Martig, J.; Tschudi, P.; Meylan, M. Pneumonia in Calves: Characterization of the Bacterial Spectrum and the Resistance Patterns to Antimicrobial Drugs. Schweiz. Arch. Tierheilkd. 2001, 143, 341–350. [Google Scholar]
- Lysnyansky, I.; Ayling, R.D. Mycoplasma Bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility. Front. Microbiol. 2016, 7, 595. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.Y.; Lazizzera, C.; Châtre, P.; Meunier, D.; Martin, S.; Lepage, G.; Ménard, M.F.; Lebreton, P.; Rambaud, T. Prevalence of Fecal Carriage of Acquired Expanded-Spectrum Cephalosporin Resistance in Enterobacteriaceae Strains from Cattle in France. J. Clin. Microbiol. 2008, 46, 1566–1567. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, J.; Wagenaar, J.A.; Giessen, A.; Dierikx, C.; Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Mevius, D. Increasing Prevalence and Diversity of ESBL/AmpC-Type β-Lactamase Genes in Escherichia Coli Isolated from Veal Calves from 1997 to 2010. J. Antimicrob. Chemother. 2013, 68, 1970–1973. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia Coli on Bavarian Dairy and Beef Cattle Farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [PubMed]
- DeFrancesco, K.A.; Cobbold, R.N.; Rice, D.H.; Besser, T.E.; Hancock, D.D. Antimicrobial Resistance of Commensal Escherichia Coli from Dairy Cattle Associated with Recent Multi-Resistant Salmonellosis Outbreaks. Vet. Microbiol. 2004, 98, 55–61. [Google Scholar] [CrossRef]
- Springer, H.R.; Denagamage, T.N.; Fenton, G.D.; Haley, B.J.; Kessel, J.A.S.; Hovingh, E.P. Antimicrobial Resistance in Fecal Escherichia Coli and Salmonella Enterica from Dairy Calves: A Systematic Review. Foodborne Pathog. Dis. 2019, 16, 23–34. [Google Scholar] [CrossRef]
- Salaheen, S.; Kim, S.W.; Cao, H.; Wolfgang, D.R.; Hovingh, E.; Karns, J.S.; Haley, B.J.; Kessel, J.A.S. Antimicrobial Resistance among Escherichia Coli Isolated from Veal Calf Operations in Pennsylvania. Foodborne Pathog. Dis. 2019, 16, 74–80. [Google Scholar] [CrossRef]
- Hutchinson, H.; Finney, S.; Muñoz-Vargas, L.; Feicht, S.; Masterson, M.; Habing, G. Prevalence and Transmission of Antimicrobial Resistance in a Vertically Integrated Veal Calf Production System. Foodborne Pathog Dis 2017, 14, 711–718. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Hesp, A.; Goot, J.; Joosten, P.; Sarrazin, S.; Wagenaar, J.A.; Dewulf, J.; Mevius, D.J. Antimicrobial Resistance Prevalence in Commensal Escherichia Coli from Broilers, Fattening Turkeys, Fattening Pigs and Veal Calves in European Countries and Association with Antimicrobial Usage at Country Level. J. Med. Microbiol. 2020, 69, 537–547. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Atwill, E.R.; Sischo, W.M. Animal and Farm Influences on the Dynamics of Antibiotic Resistance in Faecal Escherichia Coli in Young Dairy Calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Hoyle, D.V.; Shaw, D.J.; Knight, H.I.; Davison, H.C.; Pearce, M.C.; Low, C.; Gunn, G.J.; Woolhouse, M.E.J. Age-Related Decline in Carriage of Ampicillin-Resistant Escherichia Coli in Young Calves. Appl. Environ. Microbiol. 2004, 70, 6927–6930. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, S.C.; Straley, B.A.; Hegde, N.V.; Sawant, A.A.; DebRoy, C.; Jayarao, B.M. Molecular Epidemiology of Ceftiofur-Resistant Escherichia Coli Isolates from Dairy Calves. Appl. Environ. Microbiol. 2006, 72, 3940–3948. [Google Scholar] [CrossRef]
- Hordijk, J.; Wagenaar, J.A.; Kant, A.; Essen-Zandbergen, A.; Dierikx, C.; Veldman, K.; Wit, B.; Mevius, D. Cross-Sectional Study on Prevalence and Molecular Characteristics of Plasmid Mediated ESBL/AmpC-Producing Escherichia Coli Isolated from Veal Calves at Slaughter. PLoS ONE 2013, 8, e65681. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, J.; Mevius, D.J.; Kant, A.; Bos, M.E.H.; Graveland, H.; Bosman, A.B.; Hartskeerl, C.M.; Heederik, D.J.J.; Wagenaar, J.A. Within-Farm Dynamics of ESBL/AmpC-Producing Escherichia Coli in Veal Calves: A Longitudinal Approach. J. Antimicrob. Chemother. 2013, 68, 2468–2476. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Linton, A.H.; Osborne, A.D. A Longitudinal Study of Escherichia Coli in Cows and Calves with Special Reference to the Distribution of O-Antigen Types and Antibiotic Resistance. J. Appl. Bacteriol. 1976, 40, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Hinton, M.; Linton, A.M.; Hedges, A.J. The Ecology of Escherichia Coli in Calves Reared as Dairy-Cow Replacements. J. Appl. Bacteriol. 1985, 58, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Beyrouthy, R.; Lupo, A.; Châtre, P.; Madec, J.Y.; Bonnet, R. Epidemic Spread of Escherichia Coli ST744 Isolates Carrying Mcr-3 and BlaCTX-M-55 in Cattle in France. J. Antimicrob. Chemother. 2018, 73, 533. [Google Scholar] [CrossRef]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef]
- Tate, H.; Li, C.; Nyirabahizi, E.; Tyson, G.H.; Zhao, S.; Rice-Trujillo, C.; Jones, S.B.; Ayers, S.; M’Ikanatha, N.M.; Hanna, S.; et al. A National Antimicrobial Resistance Monitoring System Survey of Antimicrobial-Resistant Foodborne Bacteria Isolated from Retail Veal in the United States. J. Food Prot. 2021, 84, 1749–1759. [Google Scholar] [CrossRef]
- Lianou, A.; Panagou, E.Z.; Nychas, G.J.E. Meat Safety—I Foodborne Pathogens and Other Biological Issues. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2017; pp. 521–552. [Google Scholar] [CrossRef]
- Cook, A.; Reid-Smith, R.J.; Irwin, R.J.; Mcewen, S.A.; Young, V.; Butt, K.; Ribble, C. Antimicrobial Resistance in Escherichia Coli Isolated from Retail Milk-Fed Veal Meat from Southern Ontario, Canada. J. Food Prot. 2011, 74, 1328–1333. [Google Scholar] [CrossRef]
- Bosilevac, J.M.; Zhilyaev, S.; Wang, R.; Luedtke, B.E.; Wheeler, T.L.; Koohmaraie, M. Prevalence and Characterization of Salmonella Present during Veal Harvest. J. Food Prot. 2019, 82, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Webb, H.E.; Brichta-Harhay, D.M.; Brashears, M.M.; Nightingale, K.K.; Arthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Schmidt, J.W.; Wang, R.; Granier, S.A.; et al. Salmonella in Peripheral Lymph Nodes of Healthy Cattle at Slaughter. Front. Microbiol. 2017, 8, 2214. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Vargas, L.; Finney, S.K.; Hutchinson, H.; Masterson, M.A.; Habing, G. Impact of Clinical Salmonellosis in Veal Calves on the Recovery of Salmonella in Lymph Nodes at Harvest. Foodborne Pathog. Dis. 2017, 14, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Varma, J.K.; Mølbak, K.; Barrett, T.J.; Beebe, J.L.; Jones, T.F.; Rabatsky-Ehr, T.; Smith, K.E.; Vugia, D.J.; Chang, H.G.H.; Angulo, F.J. Antimicrobial-Resistant Nontyphoidal Salmonella Is Associated with Excess Bloodstream Infections and Hospitalizations. J. Infect. Dis. 2005, 191, 554–561. [Google Scholar] [CrossRef]
- Harvey, R.R.; Friedman, C.R.; Crim, S.M.; Judd, M.; Barrett, K.A.; Tolar, B.; Folster, J.P.; Griffin, P.M.; Brown, A.C. Epidemiology of Salmonella Enterica Serotype Dublin Infections among Humans, United States, 1968–2013. Emerg. Infect. Dis. 2017, 23, 1493–1501. [Google Scholar] [CrossRef]
- McDonough, P.L.; Fogelman, D.; Shin, S.J.; Brunner, M.A.; Lein, D.H. Salmonella Enterica Serotype Dublin Infection: An Emerging Infectious Disease for the Northeastern United States. J. Clin. Microbiol. 1999, 37, 2418–2427. [Google Scholar] [CrossRef]
- Locke, S.R.; Pempek, J.A.; Meyer, R.; Portillo-Gonzalez, R.; Sockett, D.; Aulik, N.; Habing, G. Prevalence and Sources of Salmonella Lymph Node Infection in Special-Fed Veal Calves. J. Food Prot. 2022, 85, 906–917. [Google Scholar] [CrossRef]
- Cook, A.; Reid-Smith, R.J.; Irwin, R.J.; Mcewen, S.; Young, V.; Ribble, C. Antimicrobial Resistance in Campylobacter, Salmonella, and Escherichia Coli Isolated from Retail Grain-Fed Veal Meat from Southern Ontario, Canada. J. Food Prot. 2011, 74, 1245–1251. [Google Scholar] [CrossRef]
- Gaulin, C.; Ramsay, D.; Dion, R.; Simard, M.; Gariépy, C.; Levac, É.; Hammond-Collins, K.; Michaud-Dumont, M.; Gignac, M.; Fiset, M. Veal Liver as Food Vehicle for Human Campylobacter Infections. Emerg. Infect. Dis. 2018, 24, 1130–1133. [Google Scholar] [CrossRef]
- Labio, E.; Regula, G.; Steiner, A.; Miserez, R.; Thomann, A.; Ledergerber, U. Antimicrobial Resistance in Bacteria from Swiss Veal Calves at Slaughter. Zoonoses Pub. Health 2007, 54, 344–352. [Google Scholar] [CrossRef]
- Barkema, H.W.; Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited Review: Changes in the Dairy Industry Affecting Dairy Cattle Health and Welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Santinello, M.; Diana, A.; Marchi, M.; Scali, F.; Bertocchi, L.; Lorenzi, V.; Alborali, G.L.; Penasa, M. Promoting Judicious Antimicrobial Use in Beef Production: The Role of Quarantine. Animals 2022, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Menéndez González, S.; Steiner, A.; Gassner, B.; Regula, G. Antimicrobial Use in Swiss Dairy Farms: Quantification and Evaluation of Data Quality. Prev. Vet. Med. 2010, 95, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; Catry, B.; Boone, R.; Theys, H.; Bleecker, K.; Dewulf, J.; Deprez, P. Characteristics and Challenges of the Modern Belgian Veal Industry. Vlaams Diergeneeskd. Tijdschr. 2014, 83, 155–163. [Google Scholar] [CrossRef]
- Speksnijder, D.C.; Jaarsma, A.D.C.; Gugten, A.C.; Verheij, T.J.M.; Wagenaar, J.A. Determinants Associated with Veterinary Antimicrobial Prescribing in Farm Animals in the Netherlands: A Qualitative Study. Zoonoses Pub. Health 2015, 62 (Suppl. 1), 39–51. [Google Scholar] [CrossRef]
- Rell, J.; Wunsch, N.; Home, R.; Kaske, M.; Walkenhorst, M.; Vaarst, M. Stakeholders’ Perceptions of the Challenges to Improving Calf Health and Reducing Antimicrobial Use in Swiss Veal Production. Prev. Vet. Med. 2020, 179, 104970. [Google Scholar] [CrossRef]
- Speksnijder, D.C.; Jaarsma, D.A.C.; Verheij, T.J.M.; Wagenaar, J.A. Attitudes and Perceptions of Dutch Veterinarians on Their Role in the Reduction of Antimicrobial Use in Farm Animals. Prev. Vet. Med. 2015, 121, 365–373. [Google Scholar] [CrossRef]
- Pempek, J.A.; Cheng, T.Y.; Masterson, M.A.; Habing, G.G. A Survey of Antimicrobial Use Practices on Veal Farms in the United States; The Ohio State University: Columbus, OH, USA, 2022; manuscript in preparation. [Google Scholar]
- Hockenhull, J.; Turner, A.E.; Reyher, K.K.; Barrett, D.C.; Jones, L.; Hinchliffe, S.; Buller, H.J. Antimicrobial Use in Food-Producing Animals: A Rapid Evidence Assessment of Stakeholder Practices and Beliefs. Vet. Rec. 2017, 181, 510. [Google Scholar] [CrossRef]
- Golding, S.E.; Ogden, J.; Higgins, H.M. Shared Goals, Different Barriers: A Qualitative Study of UK Veterinarians’ and Farmers’ Beliefs about Antimicrobial Resistance and Stewardship. Front. Vet. Sci. 2019, 6, 132. [Google Scholar] [CrossRef]
- Apley, M.D.; Godden, S.; Hope, K.J.; Schrag, N.F.D. Antimicrobial Use Monitoring. Am. Assoc. Bov. Pract. Conf. Proc. 2018, 91–95. [Google Scholar] [CrossRef]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef] [PubMed]
- FDA. Finalizes Guidance to Bring Remaining Approved Over-the-Counter Medically Important Antimicrobial Drugs Used for Animals Under Veterinary Oversight|FDA. Available online: https://www.fda.gov/animal-veterinary/cvm-updates/fda-finalizes-guidance-bring-remaining-approved-over-counter-medically-important-antimicrobial-drugs (accessed on 26 June 2022).
- Cobo-angel, C.; Gohar, B.; Leblanc, S.J. Values and Risk Perception Shape Canadian Dairy Farmers’ Attitudes toward Prudent Use of Antimicrobials. Antibiotics 2022, 11, 550. [Google Scholar] [CrossRef] [PubMed]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Drivers, Alternatives, Knowledge, and Perceptions towards Antimicrobial Use among Tennessee Beef Cattle Producers: A Qualitative Study. BMC Vet. Res. 2019, 15, 16. [Google Scholar] [CrossRef] [PubMed]
Factors that Increase Antimicrobial Use Risk | Reference | |
---|---|---|
Antimicrobial Use | 1. Winter months | [20] |
2. Beef breed surplus calves compared to dairy and crossbred | [20] | |
3. Higher the number of source farms | [42] | |
4. Higher ammonia levels | [42] | |
5. Practices such as health checks and quarantine reduce the risk of AMU | [31] | |
6. A higher number of calves/drinking nipple | [42] | |
7. Lower body weight | [12,25,43] | |
8. Younger age at arrival | [24,44,45] | |
9. Calf health—Diarrhea, cough, pyrexia, depressed attitude, umbilical infection, dehydration, and failed transfer of passive immunity | [9,25,46,47,48] |
Bacterial Agents Studied | Country | Antimicrobials Tested | Major Findings | Reference |
---|---|---|---|---|
Pasteurellaceae (P.multocida, Pasteurella spp, M. haemolytica, Mannheimia spp.) from the respiratory tract of healthy veal calves | Belgium | Ampicillin, ceftiofur, oxytetracycline, gentamicin, enrofloxacin, tilmicosin, trimethoprim-sulfadimidine | Acquired resistance to ampicillin, oxytetracycline, trimethoprim-sulfadimidine, gentamicin, tilmicosin, enrofloxacin more common in veal herds when compared to dairy and beef | [55] |
P. multocida, M. haemolytica from respiratory samples collected during two time points (at 4 and 24 weeks after arrival at a veal farm) | Belgium | Ampicillin, amoxicillin-clavulanic acid, ceftiofur, oxytetracycline, trimethoprim-sulfonamide, neomycin, gentamicin, spectinomycin, nalidixic acid, flumequine, enrofloxacin | Veal herds had a substantially higher number of resistant isolates compared to beef herds. Antimicrobials to which highest percentages of resistance identified include -ampicillin (8–30%), tetracyclines (38–43%), trimethoprim sulfonamide (30–50%), nalidixic acid (19–49%), flumequine (16–44%), enrofloxacin (10–36%), neomycin (18–45%), streptomycin (78–89%), gentamicin (15–43%) | [41] |
M. haemolytica, P. multocida from the respiratory tract of veal calves | Switzerland | Ceftiofur, danofloxacin, enrofloxacin, tilmicosin, tulathromycin, spectinomycin, penicillin, oxytetracycline, florfenicol, ceftiofur, | Antimicrobials to which highest percentages of resistance identified include—oxytetracyclines (27–94%), penicillin (42–52%), spectinomycin (0.3–81%), tilmicosin (53%), tulathromycin (0–30%) and danofloxacin (14–36%) | [59] |
P. multocida, M. haemolytica, Histophilus somni * from the nasopharynx of young and older veal calves | Switzerland | Ceftiofur, danofloxacin, enrofloxacin, tulathromycin, spectinomycin, penicillin, oxytetracycline, florfenicol, tilmicosin | AMR was common against oxytetracycline, spectinomycin, tulathromycin, penicillin and danofloxacin | [58] |
Mycoplasma bovis from clinical samples | Netherland | Enrofloxacin, erythromycin, oxytetracycline, tilmicosin, tulathromycin, tylosin, ampicillin, ceftiofur, chlortetracycline, clindamycin, danofloxacin, florfenicol, gentamicin, neomycin, penicillin, spectinomycin, sulphadimethoxine, tiamulin, trimethoprim-sulphamethoxazole | The highest minimum inhibitory concentrations (MIC) values were obtained for erythromycin, tilmicosin, tylosin. | [60] |
M. bovis from respiratory samples | Belgium | Florfenicol, oxytetracycline, doxycycline, tilmicosin, tylosin, gamithromycin, tiamulin, gentamicin, enrofloxacin | No significant difference in resistance was observed between veal, dairy and beef herds except for gamithromyicn (highest resistance in beef herds). Higher MIC values were obtained for tilmicosin, tylosin, gamithromycin and florfenicol | [61] |
Isolates Studied | Country | Antimicrobials Tested | Antimicrobials to Which the Highest Proportion of Resistance Was Observed | Major Antibiotic Resistance Genes Identified | Reference |
---|---|---|---|---|---|
ESBL/AmpC producing E. coli from fecal samples collected from veal calves upon arrival at the fattening farm and just before departure to the slaughterhouse | France | Amoxicillin, amoxicillin-clavulanic acid, cefalothin, cefuroxime, ceftiofur, cefoxitin, cefquinome, ertapenem), tetracycline, gentamicin, streptomycin, florfenicol, colistin, sulfonamides, nalidixic acid, enrofloxacin | Amoxicillin (69%)-, tetracyclines (90–93%), streptomycin (74–80%), sulfonamides (78–95%) | CTX-M group 1 (blaCTX-M-1, blaCTX-M-15, blaCTX-M-32, blaCTX-M-55, blaCTX-M-3) group 9, group 2, blaCMY-2, mcr-1, mcr-3 | [32] |
E. coli from calves from multiple veal farms | Switzerland | Ceftiofur, enrofloxacin, gentamicin, neomycin, spectinomycin, ampicillin, oxytetracycline | Oxytetracycline (66%), ampicillin (54%), neomycin (26%), spectinomycin (25%), gentamicin (15%), enrofloxacin (14%) | Not studied | [59] |
ESBL/AmpC E. coli from veal calf fecal samples collected from 1997 to 2010 | Netherland | Tested only for cefotaxime susceptibility | - | AmpC type 3, type 34, blaCMY-2, blaCTX-M-1, blaCTX-M-2 or 97, blaCTX-M-14, blaCTX-M-15, blaCTX-M-32, blaCTX-M-79, blaTEM-52, blaTEM-20, blaSHV-12 | [66] |
E. coli from manure and fecal samples from calves in auction houses and at veal calf operations | U.S. | Ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, gentamicin, sulfisoxazole, trimethoprim-sulfamethoxazole, azithromycin, chloramphenicol, tetracycline, streptomycin, ciprofloxacin, nalidixic acid | Tetracyclines (75–100%), Penicillins (50–100%), Aminoglycosides (60–100%), Phenicols (25–100%), Folate pathway inhibitors (40–100%), Beta-lactams (20–100%) | blaCTX-M-1, blaCTX-M-9 | [70] |
Fecal microbial community of commercially raised veal calves early and late stages of production (metagenomic study) | U.S. | Not tested | - | * ARGs to aminoglycosides, tetracyclines, macrolide-lincosamide-streptogramin B | [3] |
E. coli from feces and carcass swabs from a vertically integrated veal production system | U.S. | Ampicillin, ciprofloxacin, ceftriaxone, chloramphenicol, cefoxitin, gentamicin, neomycin, nalidixic acid, streptomycin, sulfamethoxazole-trimethoprim, tetracycline, ceftiofur | Ampicillin (25–95%), neomycin (20–98%), streptomycin (30–95%), tetracycline (45–98%), sulfamethoxazole-trimethoprim (20–92%) | blaCMY-2, blaCTX-M (only two genes were tested) | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinayamohan, P.G.; Locke, S.R.; Portillo-Gonzalez, R.; Renaud, D.L.; Habing, G.G. Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems. Microorganisms 2022, 10, 1652. https://doi.org/10.3390/microorganisms10081652
Vinayamohan PG, Locke SR, Portillo-Gonzalez R, Renaud DL, Habing GG. Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems. Microorganisms. 2022; 10(8):1652. https://doi.org/10.3390/microorganisms10081652
Chicago/Turabian StyleVinayamohan, Poonam G., Samantha R. Locke, Rafael Portillo-Gonzalez, David L. Renaud, and Gregory G. Habing. 2022. "Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems" Microorganisms 10, no. 8: 1652. https://doi.org/10.3390/microorganisms10081652