Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of River Water at Locations in the Culiacan Valley, Northwestern Mexico
2.2. Evaluation of Environmental and Water Parameters
2.3. Ultrafiltration Process for River Water Samples
2.4. Recovery and Characterization of S. enterica Isolates by Culturing, Biochemical and Molecular Methods
2.5. Genome Sequencing and Assembly of the Recovered S. enterica Isolates
2.6. In Silico Serotyping and Phylogenetic Relationships of the Recovered S. enterica Isolates
2.7. Statistical Analysis
3. Results
3.1. Salmonella Recovery from River Sampling Locations in the Culiacan Valley, Northwestern Mexico
3.2. Effect of Environmental and Physicochemical Water Parameters on Salmonella Detection Levels
3.3. Serovar Identification and Phylogenetic Relationships among the Recovered Salmonella Isolates from River Water in the Culiacan Valley
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Besser, J.M. Salmonella epidemiology: A whirlwind of change. Food Microbiol. 2018, 71, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; International Collaboration on Enteric Disease “Burden of Illness” Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. European Food Safety Authority and European Centre for Disease Prevention Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Godínez-Oviedo, A.; Tamplin, M.L.; Bowman, J.P.; Hernández-Iturriaga, M. Salmonella enterica in Mexico 2000–2017: Epidemiology, Antimicrobial Resistance, and Prevalence in Food. Foodborne Pathog. Dis. 2020, 17, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Clemens, R.L. The Expanding U.S. Market for Fresh Produce; Center for Agricultural and Rural Development at Digital Repository Iowa State University: Ames, IA, USA, 2015; pp. 1–3. [Google Scholar]
- Flores, D. Tomato Annual; MX8025; USDA Foreign Agricultural Service: Washington, DC, USA, 2018.
- Huang, S.W. Imports Contribute to Year-Round Fresh Fruit Availability; FTS-356-01; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2013.
- Aguirre-Sanchez, J.R.; Ibarra-Rodriguez, J.R.; Vega-Lopez, I.F.; Martínez-Urtaza, J.; Chaidez-Quiroz, C. Genomic signatures of adaptation to natural settings in non-typhoidal Salmonella enterica Serovars Saintpaul, Thompson and Weltevreden. Infect. Genet. Evol. 2021, 90, 104771. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.A.; Eade, C.R.; Wiedmann, M. Embracing Diversity: Differences in Virulence Mechanisms, Disease Severity, and Host Adaptations Contribute to the Success of Nontyphoidal Salmonella as a Foodborne Pathogen. Front. Microbiol. 2019, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, I.; Medrano-Felix, J.A.; Castro-Del Campo, N.; Lopez-Cuevas, O.; Ibarra Rodriguez, J.R.; Martinez-Rodriguez, C.; Valdez-Torres, J.B.; Chaidez, C. Metabolic plasticity of Salmonella enterica as adaptation strategy in river water. Int. J. Environ. Health Res. 2021, 31, 1896682. [Google Scholar] [CrossRef]
- Medrano-Félix, J.A.; Castro-del Campo, N.; Peraza Garay, F.d.J.; Martínez-Rodríguez, C.I.; Chaidez, C. Carbon source utilization-based metabolic activity of Salmonella Oranienburg and Salmonella Saintpaul in river water. Water Environ. J. 2018, 32, 118–124. [Google Scholar] [CrossRef]
- Haley, B.J.; Cole, D.J.; Lipp, E.K. Distribution, diversity, and seasonality of waterborne salmonellae in a rural watershed. Appl. Environ. Microbiol. 2009, 75, 1248–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, C.S.; Tertuliano, M.; Rajeev, S.; Vellidis, G.; Levy, K. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia. J. Appl. Microbiol. 2018, 124, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.N.; Tsai, H.C.; Hsu, B.M.; Chiou, C.S. The association of Salmonella enterica from aquatic environmental and clinical samples in Taiwan. Sci. Total Environ. 2018, 624, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.; Weill, F.-X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella: Paris, France, 2007; pp. 1–166. [Google Scholar]
- Contreras-Soto, M.B.; Medrano-Félix, J.A.; Ibarra-Rodríguez, J.R.; Martínez-Urtaza, J.; Chaidez, Q.C.; Castro-del Campo, N. The last 50 years of Salmonella in Mexico: Sources of isolation and factors that influence its prevalence and diversity. Rev. Bio Cienc. 2019, 6, e540. [Google Scholar] [CrossRef]
- Estrada-Acosta, M.; Jiménez, M.; Chaidez, C.; León-Felix, J.; Castro-Del Campo, N. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production. Environ. Monit. Assess. 2014, 186, 4323–4330. [Google Scholar] [CrossRef]
- Jiménez, M.; Martínez-Urtaza, J.; Chaidez, C. Geographical and temporal dissemination of salmonellae isolated from domestic animal hosts in the Culiacan Valley, Mexico. Microb. Ecol. 2011, 61, 811–820. [Google Scholar] [CrossRef]
- López-Cuevas, O.; León-Félix, J.; Jiménez-Edeza, M.; Chaidez-Quiroz, C. Detección y resistencia a antibióticos de Escherichia coli y Salmonella en agua y suelo agrícola. Rev. Fitotec. Mex. 2009, 32, 119–126. [Google Scholar] [CrossRef]
- Martínez-Urtaza, J.; Liebana, E.; García-Migura, L.; Pérez-Pineiro, P.; Saco, M. Characterization of Salmonella enterica serovar typhimurium from marine environments in coastal waters of Galicia (Spain). Appl. Microbiol. 2004, 70, 4030–4034. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Nova, N.E.; Sánchez, S.; Steffani, J.L.; Sierra, L.C.; Chen, Z.; Ruíz-López, F.A.; Bell, R.L.; Reed, E.A.; Balkey, M.; Rubio-Lozano, M.S.; et al. Genomic epidemiology of Salmonella enterica circulating in surface waters used in agriculture and aquaculture in Central Mexico. Appl. Environ. Microbiol. 2022, 88, e02149-21. [Google Scholar] [CrossRef]
- Jiménez, M.; Chaidez, C. Improving Salmonella determination in Sinaloa rivers with ultrafiltration and most probable number methods. Environ. Monit. Assess. 2012, 184, 4271–4277. [Google Scholar] [CrossRef]
- McEgan, R.; Rodrigues, C.A.; Sbodio, A.; Suslow, T.V.; Goodridge, L.D.; Danyluk, M.D. Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration. Lett. Appl. Microbiol. 2013, 56, 88–94. [Google Scholar] [CrossRef]
- Rentería-Guevara, S.A.; Rangel-Peraza, J.G.; Rodríguez-Mata, A.E.; Amábilis-Sosa, L.E.; Sanhouse-García, A.J.; Uriarte-Aceves, P.M. Effect of Agricultural and Urban Infrastructure on River Basin Delineation and Surface Water Availability: Case of the Culiacan River Basin. Hydrology 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, M.; Martínez-Urtaza, J.; Rodríguez-Álvarez, M.X.; León-Félix, J.; Chaidez, C. Prevalence and genetic diversity of Salmonella spp. in a river in a tropical environment in Mexico. J. Water Health 2014, 12, 874–884. [Google Scholar] [CrossRef] [PubMed]
- EPA. Method 1200: Analytical Protocol for Non-Typhoidal Salmonella in Drinking Water and Surface Water. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/epa817r12004.pdf (accessed on 1 May 2018).
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter validation of the analytical accuracy of Salmonella PCR: Towards an international standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, W.H.; Wang, H.; Jacobson, A.; Ge, B.; Zhang, G.; Hammack, T. Chapter 5: Salmonella. In Bacteriological Analytical Manual, 8th ed.; Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella (accessed on 1 May 2018).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.; Nash, J.H.; Taboada, E.N. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P.R.; Gaston, M.A. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J. Clin. Microbiol. 1988, 26, 2465–2466. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Tavare, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology/DNA Sequence Analysis; Miura, R.M., Ed.; Lectures on Mathematics in the Life Sciences; American Mathematical Society: Providence, RI, USA, 1986; Volume 17, pp. 57–86. [Google Scholar]
- Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 1994, 39, 306–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bi, P.; Hiller, J.E. Climate variations and Salmonella infection in Australian subtropical and tropical regions. Sci. Total Environ. 2010, 408, 524–530. [Google Scholar] [CrossRef]
- Mancera González, O. The cyclone nobody saw: Risks that potentiated a disaster in the Northwest of Mexico. Rev. Estud. Latinoam. Sobre Reducc. Riesgo Desastre 2021, 5, 110–125. [Google Scholar] [CrossRef]
- Spector, M.P.; Garcia del Portillo, F.; Bearson, S.M.D.; Mahmud, A.; Magut, M.; Finlay, B.B.; Dougan, G.; Foster, J.W.; Pallen, M.J. The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 1999, 145, 3035–3045. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, R.A.; Humphries, A.D.; Weening, E.H.; de Zoete, M.R.; Winter, S.; Papaconstantinopoulou, A.; Dougan, G.; Bäumler, A.J. Molecular and phenotypic analysis of the CS54 Island of Salmonella enterica serotype Typhimurium: Identification of intestinal colonization and persistence determinants. Infect. Immun. 2003, 71, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DGE. Dirección General de Epidemiología, Anuario de Morbilidad 1984–2020. Available online: https://epidemiologia.salud.gob.mx/anuario/html/index.html (accessed on 20 June 2021).
- Estrada-García, T.; López-Saucedo, C.; Zamarripa-Ayala, B.; Thompson, M.R.; Gutierrez-Cogco, L.; Mancera-Martinez, A.; Escobar-Gutierrez, A. Prevalence of Escherichia coli and Salmonella spp. in street-vended food of open markets (tianguis) and general hygienic and trading practices in Mexico City. Epidemiol. Infect. 2004, 132, 1181–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comisión Nacional del Agua (CONAGUA). Reporte del clima en México. Septiembre 2018. Coordinación General del Servicio Meteorológico Nacional Gerencia de Meteorología y Climatología Subgerencia de Pronóstico a Mediano y Largo Plazo. Available online: https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Diagn%C3%B3stico%20Atmosf%C3%A9rico/Reporte%20del%20Clima%20en%20M%C3%A9xico/RC-Septiembre18.pdf (accessed on 13 September 2021).
- Instituto Nacional de Estadística y Geografía (INEGI). Características Edafológicas, Fisiográficas, Climáticas e Hidrográficas de México. Available online: http://www.inegi.org.mx/inegi/spc/doc/internet/1geografiademexico/manual_carac_eda_fis_vs_enero_29_2008.pdf (accessed on 20 June 2021).
- Rhodes, M.W.; Kator, H. Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl. Environ. Microbiol. 1988, 54, 2902–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Greiner, M.; Holler, C.; Messelhausser, U.; Rampp, A.; Klein, G. Association between the ambient temperature and the occurrence of human Salmonella and Campylobacter infections. Sci. Rep. 2016, 6, 28442. [Google Scholar] [CrossRef] [Green Version]
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of climate change on Salmonella infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Cherrie, M.P.C.; Nichols, G.; Iacono, G.L.; Sarran, C.; Hajat, S.; Fleming, L.E. Pathogen seasonality and links with weather in England and Wales: A big data time series analysis. BMC Public Health 2018, 18, 1067. [Google Scholar] [CrossRef] [Green Version]
- Winfield, M.D.; Groisman, E.A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 3687–3694. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, S.; Dugan, M.E. Growth temperature associated protein expression and membrane fatty acid composition profiles of Salmonella enterica serovar Typhimurium. J. Basic Microbiol. 2010, 50, 507–518. [Google Scholar] [CrossRef]
- Simental, L.; Martinez-Urtaza, J. Climate patterns governing the presence and permanence of salmonellae in coastal areas of Bahia de Todos Santos, Mexico. Appl. Environ. Microbiol. 2008, 74, 5918–5924. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.S.; Bech, T.B. Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Res. Int. 2012, 45, 557–566. [Google Scholar] [CrossRef]
- Levantesi, C.; Bonadonna, L.; Briancesco, R.; Grohmann, E.; Toze, S.; Tandoi, V. Salmonella in surface and drinking water: Occurrence and water-mediated transmission. Food Res. Int. 2012, 45, 587–602. [Google Scholar] [CrossRef]
- McEgan, R.; Mootian, G.; Goodridge, L.D.; Schaffner, D.W.; Danyluk, M.D. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters. Appl. Environ. Microbiol. 2013, 79, 4094–4105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Chen, Q.; Guo, A.; Liu, W.; Ruan, Y.; Zhang, X.; Nou, X. Differential Effects of Growth Medium Salinity on Biofilm Formation of Two Salmonella enterica Strains. J. Food Prot. 2020, 83, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Urtaza, J.; Liebana, E. Investigation of clonal distribution and persistence of Salmonella Senftenberg in the marine environment and identification of potential sources of contamination. FEMS Microbiol. Ecol. 2005, 52, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorski, L.; Liang, A.S.; Walker, S.; Carychao, D.; Aviles Noriega, A.; Mandrell, R.E.; Cooley, M.B.; Dudley, E.G. Salmonella enterica serovar diversity, distribution, and prevalence in public-access waters from a Central California coastal leafy green-growing region from 2011 to 2016. Appl. Environ. Microbiol. 2022, 88, e01834-21. [Google Scholar] [CrossRef] [PubMed]
- CDC. Center for Disease Control and Prevention: Investigation Details. Salmonella Outbreak Linked to Onions. Available online: https://www.cdc.gov/salmonella/oranienburg-09-21/details.html (accessed on 31 March 2022).
- Heinz, E.; Stubenrauch, C.J.; Grinter, R.; Croft, N.P.; Purcell, A.W.; Strugnell, R.A.; Dougan, G.; Lithgow, T. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family. Genome Biol. Evol. 2016, 8, 1690–1705. [Google Scholar] [CrossRef] [Green Version]
River | Sampling Site | Location Name | Sampling Site Latitude | Sampling Site Longitude |
---|---|---|---|---|
Humaya | A | Adolfo López Mateos Dam | 25°02′46.9″ | −107°23′50.5″ |
B | Agua Caliente | 24°55′44.2″ | −107°23′14.9″ | |
C | La Guásima | 25°52′10.2″ | −107°24′37.1″ | |
Tamazula | D | Sanalona Dam | 25°41′54.8″ | −108°38′41.3″ |
E | Imala | 24°51′11.7″ | −107°13′17.2″ | |
F | Las Peñitas | 24°51′41.8″ | −107°15′21.1″ | |
Culiacan | G | Puente Negro | 24°48′24.3″ | −107°24′34.4″ |
H | San Pedro | 24°47′06.2″ | −107°33′31.7″ | |
I | Cofradía de San Pedro | 24°46′47.3″ | −107°35′39.8″ | |
J | Iraguato | 24°37′39.2″ | −107°39′39.2″ | |
K | El Castillo | 24°32′39.7″ | −107°42′22.8″ |
Environmental Parameter | Salmonella Levels a | pH | River Water Temperature | Total Dissolved Solids | Salinity | Electrical Conductivity | Rainfall | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rb | p | r | p | r | p | r | p | r | p | r | p | r | p | |
pH | −0.231 | 0.007 | ||||||||||||
River water temperature | 0.204 | 0.017 | 0.173 | 0.044 | ||||||||||
Total dissolved solids | −0.143 | 0.097 | 0.219 | 0.010 | 0.100 | 0.246 | ||||||||
Salinity | −0.133 | 0.123 | −0.236 | 0.006 | 0.106 | 0.221 | 0.840 | 0.000 | ||||||
Electrical conductivity | −0.143 | 0.097 | 0.215 | 0.012 | 0.095 | 0.269 | 0.985 | 0.000 | 0.861 | 0.000 | ||||
Rainfall | 0.056 | 0.518 | −0.012 | 0.890 | 0.767 | 0.000 | −0.030 | 0.731 | −0.027 | 0.753 | −0.035 | 0.685 | ||
Relative humidity | −0.049 | 0.572 | 0.069 | 0.426 | 0.561 | 0.000 | 0.045 | 0.605 | 0.048 | 0.582 | 0.036 | 0.681 | 0.762 | 0.000 |
Environmental Parameter | Regression Coefficient (ex) | Standard Error Coefficient | Regression Coefficient 95% Confidence Interval (CI) | Z-Value | p-Value | Variance Inflation Factor |
---|---|---|---|---|---|---|
Constant | 2.954 | 1.264 | (0.48, 5.43) | 2.34 | 0.019 | |
Salmonella levels in June a | 2.845 | 0.147 | (2.56, 3.13) | 19.40 | 0.000 | 1.80 |
Salmonella levels in July | 1.371 | 0.175 | (1.03, 1.71) | 7.86 | 0.000 | 1.53 |
Salmonella levels in August | 1.303 | 0.177 | (0.96, 1.65) | 7.35 | 0.000 | 1.52 |
pH | −0.397 | 0.163 | (−0.72, −0.08) | −2.43 | 0.015 | 1.11 |
Salinity | −0.115 | 0.035 | (−0.18, −0.05) | −3.29 | 0.001 | 1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-López, I.; Medrano-Félix, J.A.; Castro-del Campo, N.; López-Cuevas, O.; González-Gómez, J.P.; Valdez-Torres, J.B.; Aguirre-Sánchez, J.R.; Martínez-Urtaza, J.; Gómez-Gil, B.; Lee, B.G.; et al. Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico. Microorganisms 2022, 10, 1214. https://doi.org/10.3390/microorganisms10061214
González-López I, Medrano-Félix JA, Castro-del Campo N, López-Cuevas O, González-Gómez JP, Valdez-Torres JB, Aguirre-Sánchez JR, Martínez-Urtaza J, Gómez-Gil B, Lee BG, et al. Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico. Microorganisms. 2022; 10(6):1214. https://doi.org/10.3390/microorganisms10061214
Chicago/Turabian StyleGonzález-López, Irvin, José Andrés Medrano-Félix, Nohelia Castro-del Campo, Osvaldo López-Cuevas, Jean Pierre González-Gómez, José Benigno Valdez-Torres, José Roberto Aguirre-Sánchez, Jaime Martínez-Urtaza, Bruno Gómez-Gil, Bertram G. Lee, and et al. 2022. "Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico" Microorganisms 10, no. 6: 1214. https://doi.org/10.3390/microorganisms10061214
APA StyleGonzález-López, I., Medrano-Félix, J. A., Castro-del Campo, N., López-Cuevas, O., González-Gómez, J. P., Valdez-Torres, J. B., Aguirre-Sánchez, J. R., Martínez-Urtaza, J., Gómez-Gil, B., Lee, B. G., Quiñones, B., & Chaidez, C. (2022). Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico. Microorganisms, 10(6), 1214. https://doi.org/10.3390/microorganisms10061214