Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = Curie temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7802 KB  
Article
Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
by Thomas Hanemann, Martin Ade, Emine Cimen, Julia Schoenfelder, Kirsten Honnef, Matthias Wapler and Ines Ketterer
Ceramics 2025, 8(4), 126; https://doi.org/10.3390/ceramics8040126 - 4 Oct 2025
Viewed by 291
Abstract
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from [...] Read more.
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from 0.0 to 0.25 in 0.05 steps, due to the enhanced synthetic effort, and in the case of the SGP, x was set only to 0.05, 0.15, and 0.25. The resulting properties after synthesis, calcination, and sintering, like particle size distribution, specific surface area, particle morphology, and crystalline phase were characterized. The expected tetragonal phase, free from any remarkable impurity, was found in all cases, and irrespective of the selected synthesis method. Pressed pellets were used for the measurement of the temperature and frequency-dependent relative permittivity enabling the estimation of the Curie temperatures of all synthesized BSTs. Irrespective of the selected synthesis method, the obtained Curie temperature drops with increasing strontium content to almost identical values, e.g., in the case of x = 0.15, a Curie temperature range 95–105 °C was measured. Thin BST films could be deposited on different substrate materials applying electrophoretic deposition in a good and reliable quality according to the Hamaker equation. The properties of the BSTs obtained by the simpler solid-state route are almost identical to the ones yielded by the more complex sol–gel process. In future, this result allows for a possible wider usage of BST perovskites for ferroelectric and piezoelectric devices due to the easy synthetic access by the solid-state route. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

16 pages, 5242 KB  
Article
Temperature Field Construction in Qinghai-Gonghe Basin Based on Integrated Geophysical Inversion Results
by Yuanyuan Ming, Zhaofa Zeng, Puyuan Tian, Zhengpu Cheng, Fang Lu, Linyou Zhang, Qiuchen Li, Xue Niu and Shujun Guo
Appl. Sci. 2025, 15(19), 10630; https://doi.org/10.3390/app151910630 - 1 Oct 2025
Viewed by 133
Abstract
As a clean and renewable energy source with huge reserves, hot dry rock geothermal resources have received wide attention. The geothermal field plays a crucial role in studying the heat source mechanism of hot dry rock, defining target areas, and evaluating resources. In [...] Read more.
As a clean and renewable energy source with huge reserves, hot dry rock geothermal resources have received wide attention. The geothermal field plays a crucial role in studying the heat source mechanism of hot dry rock, defining target areas, and evaluating resources. In this study, the three-dimensional structural inversion of the Gonghe Basin is carried out using magnetotelluric sounding, and the Curie isothermal surface is obtained by analyzing regional aeromagnetic data. By coupling low-resistance and high-conductivity zones with temperature distribution and integrating the Curie isothermal surface with high-temperature anomalies of some melts, we constructed an initial temperature field model based on comprehensive geophysical data. The temperature field model of the Gonghe Basin is established by using the adaptive finite-element temperature conduction control equation and the constraints of the temperature data from geothermal wells. The temperature field model provides a basis for the future exploration of hot dry rock resources in the Gonghe area. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 4484 KB  
Article
Near-Compensated Ferrimagnetism in Disordered Co0.5Mn1.5Al Half-Heusler Alloy: Experimental and Theoretical Studies
by Emese Bender, Răzvan Hirian, Cristian Leoştean, Roman Atanasov, Radu George Haţegan, Lucian Barbu-Tudoran and Diana Benea
Materials 2025, 18(19), 4449; https://doi.org/10.3390/ma18194449 - 23 Sep 2025
Viewed by 297
Abstract
This study investigates the electronic, magnetic, and transport properties of the Co0.5Mn1.5Al half-Heusler alloy, a promising candidate for spintronic applications due to its potential half-metallic and ferrimagnetic characteristics. Experimental efforts focus on structural characterization using X-ray diffraction to examine [...] Read more.
This study investigates the electronic, magnetic, and transport properties of the Co0.5Mn1.5Al half-Heusler alloy, a promising candidate for spintronic applications due to its potential half-metallic and ferrimagnetic characteristics. Experimental efforts focus on structural characterization using X-ray diffraction to examine substitutional disorder, such as Co/Mn site migration and Mn/Al site mixing, and their impacts on magnetic and transport properties. Magnetic characterization, including magnetization and susceptibility, reveals an N-type ferrimagnetic behaviour with a Curie temperature of 670 K. Transport experiments probe resistance and magnetoresistance across various temperatures and magnetic fields to uncover conduction mechanisms and spin-dependent effects. Theoretical band structure calculations, utilizing the Korringa–Kohn–Rostoker Green’s function method, investigate the electronic structure and the role of disorder in shaping magnetic and transport properties. This integrated experimental and theoretical approach aims to clarify the alloy’s suitability for applications in exchange bias or antiferromagnetic spintronics. Full article
Show Figures

Graphical abstract

18 pages, 5446 KB  
Article
High-Resolution Drone-Based Aeromagnetic Survey at the Tajogaite Volcano (La Palma, Canary Islands): Insights into Its Early Post-Eruptive Shallow Structure
by María C. Romero-Toribio, Fátima Martín-Hernández and Juanjo Ledo
Remote Sens. 2025, 17(18), 3153; https://doi.org/10.3390/rs17183153 - 11 Sep 2025
Viewed by 1363
Abstract
The 2021 eruption of the Tajogaite volcano (La Palma, Canary Islands) provided a unique opportunity to investigate the early post-eruptive magnetic structure of a newly formed volcanic edifice. Understanding these structures is essential for improving hazard assessment and risk mitigation strategies. In this [...] Read more.
The 2021 eruption of the Tajogaite volcano (La Palma, Canary Islands) provided a unique opportunity to investigate the early post-eruptive magnetic structure of a newly formed volcanic edifice. Understanding these structures is essential for improving hazard assessment and risk mitigation strategies. In this study, we present the first high-resolution, drone-based aeromagnetic dataset over the Tajogaite volcano, aimed at clarifying its still-uncertain geodynamic framework at shallow depths. We describe the data acquisition and processing workflows for surveying volcanic terrains, providing insights into the challenges encountered and the methodologies applied. The magnetic dataset was analyzed and used to construct a 3D magnetic susceptibility model of the volcanic edifice and its surroundings. Our results revealed very low magnetic susceptibility values at very shallow depths (~50 m below the surface) over the main volcanic edifice, suggesting the presence of a likely vertical, dyke-like structure feeding the eruption. These findings indicate that these materials remain above their Curie temperature around two years after the eruption. Moreover, the magnetic anomalies display patterns that correlate with the previously inferred two-fault systems, which likely played a critical role in channelling magma toward the eruptive vents. An elongated zone of slightly low magnetic susceptibility was identified following the NE-SW Mazo fault orientation, extending toward the eruptive fissure. This feature was associated with a single, fault-controlled magma pathway that remained at high temperatures at the time of the survey, in agreement with studies in other volcanic environments. This study highlights the value of aeromagnetic surveys, particularly those conducted with drones, as effective tools for advancing our understanding of young and dynamic volcanic systems, especially regarding their shallow structures. Full article
Show Figures

Figure 1

32 pages, 9333 KB  
Review
BaTiO3-Based Electrocaloric Materials—Recent Progresses and Perspective
by Yi Tang, Xiang Niu, Yuleng Jiang, Junxi Cao, Junying Lai, Houzhu He, Jianpeng Chen, Xiaodong Jian and Sheng-Guo Lu
Materials 2025, 18(17), 4190; https://doi.org/10.3390/ma18174190 (registering DOI) - 6 Sep 2025
Viewed by 1177
Abstract
BaTiO3 (BT)-based lead-free ceramics are regarded as highly promising candidates for solid-state electrocaloric (EC) cooling devices due to their large spontaneous polarizations, shiftable Curie temperatures, and environmental friendliness. This review summarizes recent progresses in the design and optimization of BT-based EC ceramics. [...] Read more.
BaTiO3 (BT)-based lead-free ceramics are regarded as highly promising candidates for solid-state electrocaloric (EC) cooling devices due to their large spontaneous polarizations, shiftable Curie temperatures, and environmental friendliness. This review summarizes recent progresses in the design and optimization of BT-based EC ceramics. Key aspects include thermodynamic principles of the EC effect (ECE); structural phase transitions; and strategies such as constructing relaxor ferroelectrics, multi-phase coexistence, etc. Finally, future research directions are proposed, including the exploration of local microstructural evolution, polarization flip mechanisms, and bridging material design and device integration. This work aims to provide insights into the development of high-performance BT-based materials for solid-state cooling devices. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

12 pages, 3515 KB  
Article
Magnetic Properties and Coercivity Mechanism of Nanocrystalline Rare-Earth-Free Co74Zr16Mo4Si3B3 Alloys
by Aida Miranda and Israel Betancourt
Magnetochemistry 2025, 11(9), 78; https://doi.org/10.3390/magnetochemistry11090078 - 2 Sep 2025
Viewed by 568
Abstract
The microstructure and magnetic properties of rare-earth-free, melt-spun Co74Zr16Mo4Si3B3 alloys were investigated to enhance their hard magnetic response and elucidate their coercivity mechanism. The alloys exhibit a polycrystalline microstructure composed of randomly oriented, equiaxed [...] Read more.
The microstructure and magnetic properties of rare-earth-free, melt-spun Co74Zr16Mo4Si3B3 alloys were investigated to enhance their hard magnetic response and elucidate their coercivity mechanism. The alloys exhibit a polycrystalline microstructure composed of randomly oriented, equiaxed grains, predominantly comprising the rhombohedral hard magnetic Co11Zr2 phase (92.4 wt.%). These materials display a favorable combination of magnetic properties, with coercive fields up to 581 kA/m, maximum magnetization reaching 0.30 T, and Curie temperatures as high as 751 K. An interpretation of the results, based on microstructural features, intrinsic magnetic parameters, and micromagnetic simulations, indicates that the coercivity mechanism of these melt-spun alloys can be attributed to the nucleation of reverse magnetic domains. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

17 pages, 3055 KB  
Article
Development of an In-Situ Multifrequency Electromagnetic Sensor for Real-Time Microstructure Monitoring in a Continuous Annealing Furnace
by John W. Wilson, Mohsen A. Jolfaei, Lei Zhou, Carl Slater, Claire Davis and Anthony J. Peyton
Sensors 2025, 25(16), 5158; https://doi.org/10.3390/s25165158 - 19 Aug 2025
Viewed by 610
Abstract
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the [...] Read more.
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the steel on entry and exit to the furnace, monitoring the evolving microstructure of the steel through installation of sensors in the annealing line is extremely challenging due to the high temperature, high speed of the steel strip and limited space in the furnace. This study presents the development and validation of a multifrequency electromagnetic sensor system for real-time monitoring of microstructural transformations in steel during thermal cycling, intended for deployment in a continuous annealing line. Experiments were conducted on austenitic stainless steel to study the signal response to an increase in resistivity without a change in magnetic permeability. Pure nickel was tested to investigate the response to a change in magnetic permeability and the ferromagnetic-to-paramagnetic transition at its Curie temperature. A ferritic stainless steel was also tested to assess the performance of the system for high-temperature ferromagnetic materials and a higher-temperature ferromagnetic-to-paramagnetic transition. The tests indicate a strong response to material resistivity and permeability changes, with complementary information from different frequencies. Test results are supplemented by a finite element modelling study into the effect of a change in frequency and permeability on sensor response, with a discussion on the implications of experimental and modelling results for future applications. The results show that the developed system has the potential to characterise thermally induced changes in steels, establishing proof of concept for non-destructive, high-temperature electromagnetic sensing in steel processing and setting the foundation for further industrial deployment in phase and recrystallisation monitoring. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

14 pages, 2419 KB  
Article
Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures
by Xuefeng Xiao, Yan Zhang, Han Zhang, Jiayi Chen, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Crystals 2025, 15(8), 727; https://doi.org/10.3390/cryst15080727 - 16 Aug 2025
Viewed by 595
Abstract
This paper presents the preparation of Z-cut near-stoichiometric lithium niobate (NSLN) wafers using a combined process of the lithium-rich Czochralski growth and diffusion methods. The fabricated Z-cut NSLN wafers exhibited outstanding comprehensive performance, including a high Curie temperature of up to 1200 °C, [...] Read more.
This paper presents the preparation of Z-cut near-stoichiometric lithium niobate (NSLN) wafers using a combined process of the lithium-rich Czochralski growth and diffusion methods. The fabricated Z-cut NSLN wafers exhibited outstanding comprehensive performance, including a high Curie temperature of up to 1200 °C, a refractive index gradient in the diameter direction below 1.5 × 10−4 cm−1, and a UV absorption edge shifted 14 nm toward the ultraviolet region compared to congruent lithium niobate crystals, with a coercive field of 1268 V/mm. Additionally, the wafers demonstrated excellent processing characteristics, with the bow of 4-inch wafers controlled within 55 μm, surpassing the machining standards of traditional lithium niobate wafers of the same size. These results indicated the highly uniform chemical stoichiometry and crystallization quality of the wafers. Leveraging the high uniformity and low coercive field of the wafers, periodic triangular domain structure arrays were successfully fabricated, laying the foundation for domain engineering design in electro-optic deflectors and switching devices. This study not only achieves the scalable preparation of NSLN wafers but also provides a reliable technical solution for their practical applications in high-performance electro-optic devices. Full article
Show Figures

Figure 1

13 pages, 4117 KB  
Article
Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics
by Zixiang Tong, Yange Suo, Shaozheng Zhang and Jianhui Yang
Materials 2025, 18(15), 3709; https://doi.org/10.3390/ma18153709 - 7 Aug 2025
Viewed by 509
Abstract
Surface functionalization is key for tuning the electronic and magnetic properties essential in spintronics, yet its impact on chromium-based MXenes (Cr3C2T2) is not fully understood. Using spin-polarized DFT+U, this study investigates how O, F, and [...] Read more.
Surface functionalization is key for tuning the electronic and magnetic properties essential in spintronics, yet its impact on chromium-based MXenes (Cr3C2T2) is not fully understood. Using spin-polarized DFT+U, this study investigates how O, F, and OH groups modify the magnetic state, electronic structure, and Curie temperature. Functionalization dramatically changes magnetism: O termination gives ferromagnetism, while F and OH yield ferrimagnetism. Our results show surface functionalization effectively adjusts the Curie temperature, critical for spintronic materials. The electronic character is highly functional group dependent: pristine Cr3C2 is half-metallic, Cr3C2O2 metallic, and Cr3C2F2/Cr3C2(OH)2 semiconducting with narrow gaps. Structures with dynamic stability are analyzed through phonon spectroscopy. These findings provide fundamental insights into controlling MXene properties via surface functionalization, guiding the design of next-generation spintronic materials. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

13 pages, 462 KB  
Article
Electron and Hole Doping Effects on the Magnetic Properties and Band Gap Energy of Ba2FeMoO6 and Sr2FeMoO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Molecules 2025, 30(14), 2987; https://doi.org/10.3390/molecules30142987 - 16 Jul 2025
Viewed by 565
Abstract
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim [...] Read more.
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim was to find the doping ions that lead to an increase in Curie temperature TC. On the basis of a competition mechanism between spin exchange and s-d interactions, we explain at a microscopic level the decrease in magnetization M and band gap energy Eg, as well as the increase in TC of BFMO and SFMO through substitution with rare earth ions at the Ba(Sr) sites. The influence of doping with K at the Ba(Sr) and Co at the Fe sites on the magnetic properties and the band gap is also discussed. A very good qualitative coincidence with the existing experimental data was observed. Moreover, we found that both M and TC decrease with decreasing the size of BFMO and SFMO nanoparticles. Full article
Show Figures

Figure 1

22 pages, 4482 KB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 581
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

13 pages, 6320 KB  
Article
Enhanced Microwave Absorption Performance of Amorphous Co100−xFex Nanoparticles
by Zhen Wang, Chao An, Fenglong Wang, Hongsheng Liang, Zhaoyang Hou, Hao Shen and Hongjing Wu
Nanomaterials 2025, 15(14), 1091; https://doi.org/10.3390/nano15141091 - 14 Jul 2025
Viewed by 444
Abstract
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively [...] Read more.
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively low permittivity were synthesized using a simple aqueous reduction method at room temperature. The effect of atomic ratio variation on the microwave absorption properties of these nanoparticles was investigated across 2–18 GHz. The amorphous Co100−xFex nanoparticles exhibited excellent electromagnetic wave absorption performance, achieving an effective absorption bandwidth of 5.6 GHz, a matching thickness of 2.60 mm, and a reflection loss of −42 dB. Full article
(This article belongs to the Special Issue Harvesting Electromagnetic Fields with Nanomaterials)
Show Figures

Figure 1

10 pages, 6849 KB  
Article
Correlation Between Microstructure and Electric Behavior of (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 Ceramics Prepared via Chemical-Furnace-Assisted Combustion Synthesis
by Haiqin Ding, Jun Wang, Tongchun Qin, Lingling Cui, Guodong Jia, Guang Ji and Zhiwei Li
Coatings 2025, 15(7), 817; https://doi.org/10.3390/coatings15070817 - 12 Jul 2025
Viewed by 701
Abstract
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the coexistence of orthorhombic and tetragonal phases in the vicinity of x = 0.07. More importantly, the composition with x = 0.07 exhibited optimal overall electrical properties, including a high piezoelectric coefficient (d33) of 495 pC/N, the planar electromechanical coupling factor (Kp) of 41.9%, and the Curie temperature (Tc) of 123.7 °C. In addition, the average grain size was observed to progressively decrease with increasing x. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 6829 KB  
Article
Thermal Hysteresis and Reversibility of the Giant Magnetocaloric Effect at the Ferromagnetic Transition of Nd2In
by Bao Gegen, Bao Huhe, Zhi-Qiang Ou, Francois Guillou and Hargen Yibole
Materials 2025, 18(13), 3104; https://doi.org/10.3390/ma18133104 - 1 Jul 2025
Viewed by 535
Abstract
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of [...] Read more.
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of its magnetocaloric effect. Here, we estimate the thermal hysteresis using magnetic and thermal measurements at different rates. It is found to be particularly small (0.1–0.4 K), leading to almost fully reversible adiabatic temperature changes when comparing zero-field cooling and cyclic protocols. Some open questions remain with regard to the magnetostriction of Nd2In, which is presently found to be limited, in line with the absence of a thermal expansion discontinuity at the transition. The comparison of the magnetocaloric effect in Nd2In and Eu2In highlights that the limited saturation magnetization of the former affects its performance. Further efforts should therefore be made to design materials with such borderline first-/second-order transitions using heavier rare earths. Full article
(This article belongs to the Special Issue Magnetic Shape Memory Alloys: Fundamentals and Applications)
Show Figures

Figure 1

27 pages, 3233 KB  
Review
Advances in the Fabrication and Magnetic Properties of Heusler Alloy Glass-Coated Microwires with High Curie Temperature
by Mohamed Salaheldeen, Valentina Zhukova, Juan Maria Blanco, Julian Gonzalez and Arcady Zhukov
Metals 2025, 15(7), 718; https://doi.org/10.3390/met15070718 - 27 Jun 2025
Viewed by 1204
Abstract
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making [...] Read more.
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making them suitable for a wide range of applications in spintronics, magnetic sensing, and biomedical engineering. The review emphasizes the influence of geometric parameters, annealing conditions, and compositional variations on the microstructure and magnetic behavior of these materials. Detailed discussions on the Taylor–Ulitovsky fabrication technique, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) provide insights into the structural properties of the microwires. The magnetic properties, including room-temperature behavior, temperature dependence, and the effects of annealing, are thoroughly examined. The potential applications of these microwires in advanced spintronic devices, magnetic sensors, and biomedical technologies are explored. The review concludes with future research directions, highlighting the potential for further advancements in the field of Heusler alloy microwires. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

Back to TopTop