Abstract
Inspecting the inner walls of large pressure vessels requires accurate weld seam recognition, complete coverage, and precise path tracking, particularly in low-feature environments. This paper presents a fully autonomous mobile robotic system that integrates weld seam detection, localization, and tracking to support ultrasonic testing. An improved Differentiable Binarization Network (DBNet) combined with the Spatially Variant Transformer (SVTR) model enhances digital stamp recognition, while weld paths are reconstructed from three-dimensional position data acquired via binocular stereo vision. To ensure complete traversal and accurate tracking, a global–local hierarchical planning strategy is implemented: the A-star (A*) algorithm performs global path planning, the Rapidly Exploring Random Tree Connect (RRT-Connect) algorithm handles local path generation, and point cloud normal–based spherical interpolation produces smooth tracking trajectories for robotic arm motion control. Experimental validation demonstrates a 94.7% digital stamp recognition rate, 95.8% localization success, 1.65 mm average weld tracking error, 2.12° normal fitting error, 98.2% seam coverage, and a tracking speed of 96 mm/s. These results confirm the system’s capability to automate weld seam inspection and provide a reliable foundation for subsequent ultrasonic testing in pressure vessel applications.