Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory
Abstract
:1. Introduction
2. The Proposed Fault Diagnosis Method
- Step I: Feature extraction of fault data is performed to construct the Gaussian fault model.
- Step II: In the time domain (multi-feature) and space domain (multi-moment), the fault data are fused to generate the BPAs. Additionally, in the time domain, the weighted coefficient method is used to fuse BPAs over a period.
- Step III: The BPAs generated in Part II are fused by using the Dempster’s combination rule. Then, the pignistic probability transformation is employed for decision-making.
2.1. Gaussian Fault Model
- Step I: We calculate the average value of the fault data with fault type and fault feature as follows:
- Step II: We calculate the standard deviation of the fault data with the fault type and fault feature as follows:
- Step III: Based on and , the constructed Gaussian fault model can be expressed as follows:
2.2. Time–Space Domain BPA Generation
2.2.1. Space Domain BPA Generation
2.2.2. Time-Domain BPA Generation
2.3. Information Fusion and Decision-Making
3. Performance Evaluation
3.1. Simulation Environment
3.2. Numerical Results
4. Conclusions
- Real-time fault diagnosis: In UASs, real-time fault diagnosis is essential for preventing system failures and reducing downtime. Future research can concentrate on developing efficient and low-latency fusion algorithms that can provide timely fault diagnosis and enable proactive maintenance.
- Multi-modal information fusion: Instead of only considering time and space domains, integrating data from various modalities, such as frequency domain or image data, can further improve the accuracy and robustness of fault diagnosis. Combining data from different sources can offer complementary information and lead to a more comprehensive understanding of the system’s health.
- Uncertainty quantification: Fault diagnosis methods of UASs should be capable of estimating and quantifying uncertainties in their predictions. This is crucial in high-stakes applications where the reliability of diagnosis plays a vital role. Uncertainty estimation can provide confidence intervals for fault predictions and enhance decision-making processes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schweiger, K.; Preis, L. Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operation. Drones 2022, 6, 179. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R.; Min, L. Aerial-ground integrated vehicular networks: A UAV-vehicle collaboration perspective. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5154–5169. [Google Scholar] [CrossRef]
- Dai, M.; Luan, T.H.; Su, Z.; Zhang, N.; Xu, Q.; Li, R. Joint channel allocation and data delivery for UAV-assisted cooperative transportation communications in post-disaster networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16676–16689. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R.; Gu, X.; Pan, J. A V2I and V2V collaboration framework to support emergency communications in ABS-aided Internet of Vehicles. IEEE Trans. Green Commun. Netw. 2023, 7, 2038–2051. [Google Scholar] [CrossRef]
- Yuan, Q.; Lv, M.; Zhou, R.; Liu, H.; Liang, C.; Cheng, L. Use of composite multivariate multiscale permutation fuzzy entropy to diagnose the faults of rolling bearing. Entropy 2023, 25, 1049. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques–Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, A.; Zhang, Q.; He, J.; Sun, G. Fault diagnosis based on weighted extreme learning machine with wavelet packet decomposition and KPCA. IEEE Sens. J. 2018, 18, 8472–8483. [Google Scholar] [CrossRef]
- Ciaburro, G. Machine fault detection methods based on machine learning algorithms: A review. Math. Biosci. Eng. 2019, 19, 11453–11490. [Google Scholar] [CrossRef] [PubMed]
- Shraim, H.; Awada, A.; Youness, R. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerosp. Electron. Syst. Mag. 2018, 33, 14–33. [Google Scholar] [CrossRef]
- Peng, B.; Bi, Y.; Xue, B.; Zhang, M.; Wan, S. Multi-view feature construction using genetic programming for rolling bearing fault diagnosis [application notes]. IEEE Comput. Intell. Mag. 2021, 16, 79–94. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, H.; Li, K.; Kaynak, O. Time-domain frequency estimation with application to fault diagnosis of the unmanned aerial vehicles’ blade damage. IEEE Trans. Ind. Electron. 2022, 69, 5257–5266. [Google Scholar] [CrossRef]
- Rudin, K.; Ducard, G.J.J.; Siegwart, R.Y. Active fault-tolerant control with imperfect fault detection information: Applications to UAVs. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 2792–2805. [Google Scholar] [CrossRef]
- Wang, B.; Peng, X.; Jiang, M.; Liu, D. Real-time fault detection for UAV based on model acceleration engine. IEEE Trans. Instrum. Meas. 2020, 69, 9505–9516. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, J.-B.; Deng, X.; Jiang, W. The fusion of discrete Z-numbers with application for fault diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 2516615. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Geng, J.; Deng, X.; Li, X. Fault diagnosis based on non-negative sparse constrained deep neural networks and Dempster-Shafer theory. IEEE Access 2020, 8, 18182–18195. [Google Scholar] [CrossRef]
- Ramu, S.K.; Vairavasundaram, I.; Aljafari, B.; Kareri, T. Rotor bar fault diagnosis in indirect field-oriented control-fed induction motor drive using hilbert transform, discrete wavelet transform, and energy eigenvalue computation. Machines 2023, 11, 711. [Google Scholar] [CrossRef]
- Ahmed, H.O.A.; Nandi, A.K. Convolutional-transformer model with long-range temporal dependencies for bearing fault diagnosis using vibration signals. Machines 2023, 11, 746. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Y.; Jia, L.; Qin, Y.; Wang, Z. Sequential-fault diagnosis strategy for high-speed train traction systems based on unreliable tests. Appl. Sci. 2023, 13, 8226. [Google Scholar] [CrossRef]
- Huang, F.; He, Y.; Deng, X.; Jiang, W. A novel discount-weighted average fusion method based on reinforcement learning for conflicting data. IEEE Syst. J. 2023, 17, 4748–4751. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Kim, S.; Kim, S.W. Attention recurrent neural network-based severity estimation method for early-stage fault diagnosis in robot harness cable. Sensors 2023, 23, 5299. [Google Scholar] [CrossRef]
- Ciaburro, G.; Padmanabhan, S.; Maleh, Y.; Puyana-Romero, V. Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods. Informatics 2023, 10, 24. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019, 8, 59. [Google Scholar] [CrossRef]
- Wan, S.; Li, T.; Fang, B.; Yan, K.; Hong, J.; Li, X. Bearing fault diagnosis based on multisensor information coupling and attentional feature fusion. IEEE Trans. Instrum. Meas. 2023, 72, 3514412. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, Q.; Sun, G.; Zhu, X.; Liu, M.; Li, Z. An information fusion fault diagnosis method based on dimensionless indicators with static discounting factor and KNN. IEEE Sens. J. 2016, 16, 2060–2069. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion. IEEE Trans. Instrum. Meas. 2020, 69, 3325–3333. [Google Scholar] [CrossRef]
- Gao, X.; Pan, L.; Deng, Y. Quantum pythagorean fuzzy evidence theory: A negation of quantum mass function view. IEEE Trans. Fuzzy Syst. 2022, 30, 1313–1327. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y. Complex network modeling of evidence theory. IEEE Trans. Fuzzy Syst. 2021, 29, 3470–3480. [Google Scholar] [CrossRef]
- Liu, Q. Coverage reliability evaluation of wireless sensor network considering common cause failures based on D-S evidence theory. IEEE Trans. Reliab. 2021, 70, 331–345. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Wang, Y.; Wu, K.; Wu, D. A Multisensor Approach Integrating Cyclostationary Analysis and Evidence Theory for Explainable Bearing Fault Diagnosis. IEEE Sens. J. 2024, 24, 17885–17895. [Google Scholar] [CrossRef]
- Ding, W.; Sun, Y.; Li, M.; Liu, J.; Ju, H.; Huang, J.; Lin, C.T. A Novel Spark-Based Attribute Reduction and Neighborhood Classification for Rough Evidence. IEEE Trans. Cybern. 2024, 54, 1470–1483. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Qin, G.; Jin, J.; Zhang, K.; Pan, D.; Chen, M. 3D Multi-Object Tracking Based on Dual-Tracker and D-S Evidence Theory. IEEE Trans. Intell. Veh. 2023, 8, 2426–2436. [Google Scholar] [CrossRef]
- Wang, H.; Lin, D.; Qiu, J.; Ao, L.; Du, Z.; He, B. Research on multiobjective group decision-making in condition-based maintenance for transmission and transformation equipment based on D-S evidence theory. IEEE Trans. Smart Grid 2015, 6, 1035–1045. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, L.; Fu, H. Fault Diagnosis Method for Space Fluid Loop Systems Based on Improved Evidence Theory. Entropy 2024, 26, 427. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, Z. Research on Mechanical Equipment Fault Diagnosis Method Based on Deep Learning and Information Fusion. Sensors 2023, 23, 6999. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Luo, Y.; Deng, F.; Li, Y. Application of Improved MFDFA and D-S Evidence Theory in Fault Diagnosis. Appl. Sci. 2022, 12, 4976. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Deng, X. Fault diagnosis method based on time domain weighted data aggregation and information fusion. Int. Distrib. J. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, H.; Fang, W.; Zhu, C.; Jia, G. Trust Evaluation and Decision Based on D-S Evidence Theory: Early Models and Future Perspectives. IEEE Access 2023, 11, 16032–16041. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, S.; Zhou, Y.; Huang, Y.; Zhou, D. A New Reliability Coefficient Using Betting Commitment Evidence Distance in Dempster–Shafer Evidence Theory for Uncertain Information Fusion. Entropy 2023, 25, 462. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, E.; Levashenko, V.; Mukhamediev, R.; Brinzei, N.; Kovalenko, A.; Symagulov, A. Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis. Mathematics 2023, 11, 2551. [Google Scholar] [CrossRef]
- Marek, D.; Paszkuta, M.; Szyguła, J.; Biernacki, P.; Domański, A.; Szczygieł, M.; Król, M.; Wojciechowski, K. Swarm of Drones in a Simulation Environment—Efficiency and Adaptation. Appl. Sci. 2024, 14, 3703. [Google Scholar] [CrossRef]
Fault Features | BPAs | |
---|---|---|
Feature 1, | ||
Feature 2, | ∖ | |
Feature 3, | ||
Feature 4, |
Time | |||||||
---|---|---|---|---|---|---|---|
k | 0.9865 | 0.2687 | 0.9094 | 0.6016 | 0.2294 | 0.9983 | 0.6287 |
0.9919 | 0.2817 | 0.9184 | 0.7819 | 0.1692 | 0.9960 | 0.6157 | |
0.9930 | 0.2850 | 0.9431 | 0.7388 | 0.1830 | 0.9948 | 0.6105 | |
0.9907 | 0.2784 | 0.9469 | 0.6757 | 0.2038 | 0.9979 | 0.6261 | |
0.9930 | 0.2850 | 0.9667 | 0.6940 | 0.1977 | 0.9935 | 0.6053 | |
0.9959 | 0.2950 | 0.9637 | 0.7563 | 0.1774 | 0.9970 | 0.6209 | |
0.9994 | 0.3157 | 0.9606 | 0.7031 | 0.1947 | 0.9979 | 0.6261 | |
0.9981 | 0.3053 | 0.9929 | 0.7476 | 0.1802 | 0.9968 | 0.6196 | |
0.9967 | 0.2984 | 0.9799 | 0.9135 | 0.1255 | 0.9954 | 0.6131 | |
0.9959 | 0.2950 | 0.9898 | 0.7388 | 0.1830 | 0.9972 | 0.6222 | |
Weighted BPA | 0.9885 | 0.2758 | 0.9209 | 0.6753 | 0.2042 | 0.9961 | 0.6215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zhou, Z.; Zhu, L.; He, Y.; Huang, F. Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory. Actuators 2024, 13, 264. https://doi.org/10.3390/act13070264
Liu N, Zhou Z, Zhu L, He Y, Huang F. Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory. Actuators. 2024; 13(7):264. https://doi.org/10.3390/act13070264
Chicago/Turabian StyleLiu, Nikun, Zhenfeng Zhou, Lijun Zhu, Yixin He, and Fanghui Huang. 2024. "Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory" Actuators 13, no. 7: 264. https://doi.org/10.3390/act13070264
APA StyleLiu, N., Zhou, Z., Zhu, L., He, Y., & Huang, F. (2024). Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory. Actuators, 13(7), 264. https://doi.org/10.3390/act13070264