Exploring Bat–Virus Interactions: Insights from a Study in the Gobi Desert
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
- GGA 04 (LAT 44,92143499; LONG 96,66617872): 1 bat captured;
- GGA 07 (LAT 43,35308333; LONG 96,34411667): 20 bats captured;
- GGA 08 (LAT 43,30285000; LONG 97,77906667): 8 bats captured;
- GGA 10 (LAT 42,88606667; LONG 98,89566667): 15 bats captured;
- GGA 11 (LAT 42,88171667; LONG 98,81793333): 5 bats captured;
- GGA 12 (LAT 43,24652002; LONG 99,00125125): 25 bats captured.
2.2. Ecological Context and Sampling Conditions
2.3. Molecular Analysis
2.4. Sanger Sequencing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important Reservoir Hosts of Emerging Viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef]
- Teeling, E.C.; Jones, G.; Rossiter, S.J. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. In Bat Bioacoustics; Fenton, M.B., Grinnell, A.D., Popper, A.N., Fay, R.R., Eds.; Springer: New York, NY, USA, 2016; pp. 25–54. [Google Scholar] [CrossRef]
- Mollentze, N.; Streicker, D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.; Pfenning, A.R.; Zhao, H.; et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. USA 2020, 117, 22311–22322. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.; Rapin, N.; Misra, V. Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.P.; Suthers, R.A. The Physiology and Energetics of Bat Flight. J. Exp. Biol. 1972, 57, 317–335. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R. DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a012559. [Google Scholar] [CrossRef]
- Russell, A.L.; Medellín, R.A.; Mccracken, G.F. Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mol. Ecol. 2005, 14, 2207–2222. [Google Scholar] [CrossRef]
- Agnelli, P.; Russo, D.; Martinoli, A. Linee guida per la conservazione dei Chirotteri nelle costruzioni antropiche e a risoluzione degli aspetti conflittuali connessi. Ist. Super. Per La Prot. E La Ric. Ambient. 2008, 218, 222. [Google Scholar]
- Han, H.J.; Wen, H.; Zhou, C.M.; Chen, F.F.; Luo, L.M.; Liu, J.; Yu, X.J. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015, 205, 1–6. [Google Scholar] [CrossRef]
- Drexler, J.F.; Corman, V.M.; Wegner, T.; Tateno, A.F.; Zerbinati, R.M.; Gloza-Rausch, F.; Seebens, A.; Müller, M.A.; Drosten, C. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 2011, 17, 449–456. [Google Scholar] [CrossRef]
- Hayman, D.T.S. Bats as Viral Reservoirs. Annu. Rev. Virol. 2016, 3, 77–99. [Google Scholar] [CrossRef]
- Plowright, R.K.; Eby, P.; Hudson, P.J.; Smith, I.L.; Westcott, D.; Bryden, W.L.; Middleton, D.; Reid, P.A.; McFarlane, R.A.; Martin, G.; et al. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 2015, 282, 20142124. [Google Scholar] [CrossRef]
- Badrane, H.; Tordo, N. Host Switching in Lyssavirus History from the Chiroptera to the Carnivora Orders. J. Virol. 2001, 75, 8096–8104. [Google Scholar] [CrossRef]
- Esposito, A.; Del Duca, S.; Vitali, F.; Bigiotti, G.; Mocali, S.; Semenzato, G.; Papini, A.; Santini, G.; Mucci, N.; Padula, A.; et al. The Great Gobi A Strictly Protected Area: Characterization of Soil Bacterial Communities from Four Oases. Microorganisms 2024, 12, 320. [Google Scholar] [CrossRef]
- Dietz, C.; von Helversen, O. Illustrated Identification Key to the Bats of Europe. Available online: http://biocenosi.dipbsf.uninsubria.it/didattica/bat_key1.pdf (accessed on 30 October 2013).
- De Benedictis, P.; Leopardi, S.; Markotter, W.; Velasco-Villa, A. The Importance of Accurate Host Species Identification in the Framework of Rabies Surveillance, Control and Elimination. Viruses 2022, 14, 492. [Google Scholar] [CrossRef]
- Chu, D.K.W.; Leung, C.Y.H.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.M.; Poon, L.L.M. Avian Coronavirus in Wild Aquatic Birds. J. Virol. 2011, 85, 12815–12820. [Google Scholar] [CrossRef]
- Kohl, C.; Lesnik, R.; Brinkmann, A.; Ebinger, A.; Radonić, A.; Nitsche, A.; Mühldorfer, K.; Wibbelt, G.; Kurth, A. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS ONE 2012, 7, e43106. [Google Scholar] [CrossRef]
- Leary, T.; Erker, J.; Chalmers, M.; Cruz, A.; Wetzel, J.; Desai, S.; Mushahwar, I.; Dermody, T. Detection of Mammalian Reovirus RNA by Using Reverse Transcription-PCR: Sequence Diversity within the 3-Encoding L1 Gene. J. Clin. Microbiol. 2022, 40, 1368–1375. [Google Scholar] [CrossRef]
- Kandeil, A.; Gomaa, M.R.; Shehata, M.M.; El Taweel, A.N.; Mahmoud, S.H.; Bagato, O.; Moatasim, Y.; Kutkat, O.; Kayed, A.S.; Dawson, P.; et al. Isolation and Characterization of a Distinct Influenza A Virus from Egyptian Bats. J. Virol. 2019, 93, e01059-18. [Google Scholar] [CrossRef]
- Hoffmann, B.; Depner, K.; Schirrmeier, H.; Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J. Virol. Methods 2006, 136, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Chern, S.W.W.; Li, Y.; Pallansch, M.A.; Anderson, L.J. Sensitive and Broadly Reactive Reverse Transcription-PCR Assays to Detect Novel Paramyxoviruses. J. Clin. Microbiol. 2008, 46, 2652–2658. [Google Scholar] [CrossRef]
- Scaramozzino, N.; Crance, J.M.; Jouan, A.; DeBriel, D.A.; Stoll, F.; Garin, D. Comparison of Flavivirus Universal Primer Pairs and Development of a Rapid, Highly Sensitive Heminested Reverse Transcription-PCR Assay for Detection of Flaviviruses Targeted to a Conserved Region of the NS5 Gene Sequences. J. Clin. Microbiol. 2001, 39, 1922–1927. [Google Scholar] [CrossRef]
- Lambert, A.J.; Lanciotti, R.S. Consensus Amplification and Novel Multiplex Sequencing Method for S Segment Species Identification of 47 Viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus Genera of the Family Bunyaviridae. J. Clin. Microbiol. 2009, 47, 2398–2404. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 1996, 34, 1666–1671. [Google Scholar] [CrossRef]
- Diakoudi, G.; Lanave, G.; Moreno, A.; Chiapponi, C.; Sozzi, E.; Prosperi, A.; Larocca, V.; Losurdo, M.; Decaro, N.; Martella, V.; et al. Surveillance for Adenoviruses in Bats in Italy. Viruses 2019, 11, 523. [Google Scholar] [CrossRef]
- Yang, X.L.; Tan, B.; Wang, B.; Li, W.; Wang, N.; Luo, C.-M.; Wang, M.N.; Zhang, W.; Li, B.; Peng, C.; et al. Isolation and identification of bat viruses closely related to human, porcine and mink orthoreoviruses. J. Gen. Virol. 2015, 96, 3525–3531. [Google Scholar] [CrossRef]
- Lelli, D.; Moreno, A.; Lavazza, A.; Bresaola, M.; Canelli, E.; Boniotti, M.B.; Cordioli, P. Identification of Mammalian Orthoreovirus Type 3 in Italian Bats. Zoonoses Public Health 2013, 60, 84–92. [Google Scholar] [CrossRef]
- Nishizato, M.; Imai, U.; Shigenaga, C.; Obata, M.; Mitsunaga, S.; Anggita, M.; Nyampong, S.; Wulandari, S.; Hu, W.; Kiuno, K.; et al. Detection of various DNA and RNA viruses in bats in Yamaguchi Prefecture, Japan. Microbes Infect. 2024, 27, 105425. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Y.; Qiu, M.; Chen, S.W.; Xiao, J.P.; Ma, L.Z.; Liu, S.; Zhou, J.H.; Zhang, Q.H.; Li, X.; Chen, Z.; et al. High prevalence and diversity of viruses of the subfamily Gammaherpesvirinae, family Herpesviridae, in fecal specimens from bats of different species in southern China. Arch. Virol. 2016, 161, 135–140. [Google Scholar] [CrossRef]
- Lelli, D.; Prosperi, A.; Moreno, A.; Chiapponi, C.; Gibellini, A.M.; De Benedictis, P.; Leopardi, S.; Sozzi, E.; Lavazza, A. Isolation of a novel Rhabdovirus from an insectivorous bat (Pipistrellus kuhlii) in Italy. Virol. J. 2018, 15, 37. [Google Scholar] [CrossRef]
- Lelli, D.; Lavazza, A.; Prosperi, A.; Sozzi, E.; Faccin, F.; Baioni, L.; Trogu, T.; Cavallari, G.L.; Mauri, M.; Gibellini, A.M.; et al. Hypsugopoxvirus: A Novel Poxvirus Isolated from Hypsugo savii in Italy. Viruses 2019, 11, 568. [Google Scholar] [CrossRef]
- Lelli, D.; Moreno, A.; Canziani, S.; Soliani, L.; Carrera, M.; Castelli, A.; Faccin, F.; Trogu, T.; Sozzi, E.; Cavallari, G.L.; et al. Isolation of Batborne Neglected Zoonotic Agent Issyk-Kul Virus, Italy. Emerg. Infect. Dis. 2024, 30, 786–790. [Google Scholar] [CrossRef]
- Beena, V.; Saikumar, G. Emerging horizon for bat borne viral zoonoses. Virusdisease 2019, 30, 321–328. [Google Scholar] [CrossRef]
- Luo, C.M.; Wang, N.; Yang, X.L.; Liu, H.Z.; Zhang, W.; Li, B.; Hu, B.; Peng, C.; Geng, Q.B.; Zhu, G.J.; et al. Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus. J. Virol. 2018, 92, e00116-18. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, K.; Shi, Z.L.; Zhou, P. Bat Coronaviruses in China. Viruses 2019, 11, 210. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z.; Zhang, X.; Yu, X.-J. Novel betaherpesviruses and gammaherpesviruses in bats from central China. Sci. Rep. 2024, 14, 10651. [Google Scholar] [CrossRef]
- Liang, Y.; Dai, X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front. Microbiol. 2024, 15, 1458166. [Google Scholar] [CrossRef]
- Rizzo, F.; Edenborough, K.M.; Toffoli, R.; Culasso, P.; Zoppi, S.; Dondo, A.; Robetto, S.; Rosati, S.; Lander, A.; Kurth, A.; et al. Coronavirus and paramyxovirus in bats from Northwest Italy. BMC Vet. Res. 2017, 13, 396. [Google Scholar] [CrossRef]
(A) | ||||
---|---|---|---|---|
Virus | Assay Type | Target Gene | Amplicon Size (bp) | Reference |
Coronavirus | Nested RT-PCR | RdRp | 440 | [19] |
Mammalian Orthoreovirus | Real-time RT-PCR/Nested RT-PCR | RdRp/L1 | 344 | [20,21] |
Influenza A Virus | RT-PCR | PB1 | 402 | [22] |
Pestivirus | Real-time RT-PCR | 5′ NTR | — | [23] |
Paramyxovirus | Nested RT-PCR | L protein | 200–500 | [24] |
Flavivirus | RT-PCR | NS5 | 240 | [25] |
Phlebovirus | RT-PCR | S segment | 370 | [26] |
(B) | ||||
Virus | Assay Type | Target Gene | Amplicon Size (bp) | Reference |
Herpesvirus | Nested PCR | DNA polymerase | 190–250 | [27] |
Adenovirus | Nested PCR | DNA polymerase | 318–324 | [28] |
ID Sample | Bat Species | Sex | Location | Virus Detected | Sequence Target | Target | Gene Bank | Nucleotide Identity |
---|---|---|---|---|---|---|---|---|
283108/33 | Plecotus sp. | M | GGA10 | CoV | RdRp | 440 bp | PV126580 | 94.94–95.65% with MERS-related CoV BatCoV_B20-181 (ON378807) |
283108/36 | Plecotus sp. | M | GGA10 | PV126581 | ||||
283108/41 | Plecotus sp. | M | GGA10 | PV126582 | ||||
283108/44 | Plecotus sp. | M | GGA10 | PV126583 | ||||
283108/51 | Plecotus sp. | F | GGA12B | PV126584 | ||||
283108/55 | Plecotus sp. | F | GGA12B | PV126585 | ||||
283108/56 | Plecotus sp. | M | GGA12B | PV126586 | ||||
283108/57 | Plecotus sp. | F | GGA12B | PV126587 | ||||
283108/62 | Plecotus sp. | M | GGA12B | PV126588 | ||||
283108/63 | Myotis davidii | F | GGA12A | PV126589 | ||||
283108/69 | Plecotus sp. | F | GGA12A | PV126590 |
ID Sample | Bat Species | Sex | Location | Virus Detected | Sequence Target | Target | Gene Bank | Nucleotide Similarity |
---|---|---|---|---|---|---|---|---|
283108/14 | Vespertilio murinus | M | GGA07 | MRV | λ3 RdRp | 344 bp | PV126592 | 100% with MRV isolate WIV4 lambda-3 gene |
283108/9 | Plecotus sp. | M | GGA07 | PV126591 | 98.81% with MRV isolate SI-MRV06 segment L1 lambda 3 (L1) gene/MRV 3 strain T3/Rhinolophus_hipposideros/Italy/191797/2011 lambda 3 protein (L1) gene |
ID Sample | Bat Species | Sex | Location | Virus Detected | Sequence TARGET | Target | Gene Bank | Nucleotide Similarity |
---|---|---|---|---|---|---|---|---|
283108/45 | Myotis davidii | M | GGA10 | Herpes virus | DNA Polymerase gene | 190–250 bp | PV126593 | 82.11% Bat herpesvirus YBS33_Myotis macrodactylus_Japan_2022_(LC810607) |
283108/47 | Plecotus sp. | M | GGA11 | / | 80% hedgehog herpesvirus isolate XT918-16_UK_2016 (MG253639) 76.64% Bat herpesvirus isolate HP/11HN110_China_2011 (KR261845) | |||
283108/62 | Plecotus sp. | M | GGA12B | / |
Oasis | Epseticus | Hypsugo | Myotis | Plecotus | Vespertilio |
---|---|---|---|---|---|
GGA04 | - | - | 0% (n = 0/1) | - | - |
GGA07 | - | 0% (n = 0/1) | 0% (n = 0/1) | 0% (n = 0/15) | 0% (n = 0/3) |
GGA08 | 0% (n = 0/2) | 0% (n = 0/1) | 0% (n = 0/1) | 0% (n = 0/2) | 0% (n = 0/2) |
GGA10 | 0% (n = 0/1) | - | 0% (n = 0/3) | 36.4% (n = 4/11) | - |
GGA11 | - | - | - | 0% (n = 0/3) | 0% (n = 0/2) |
GGA12 | - | - | 50% (n = 1/2) | 26.1% (6/23) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canziani, S.; Lelli, D.; Agnelli, P.; Augugliaro, C.; Bazarragchaa, M.; Bertolino, S.; Carlomagno, M.; Davaakhuu, G.; Delledonne, M.; Gili, F.; et al. Exploring Bat–Virus Interactions: Insights from a Study in the Gobi Desert. Pathogens 2025, 14, 870. https://doi.org/10.3390/pathogens14090870
Canziani S, Lelli D, Agnelli P, Augugliaro C, Bazarragchaa M, Bertolino S, Carlomagno M, Davaakhuu G, Delledonne M, Gili F, et al. Exploring Bat–Virus Interactions: Insights from a Study in the Gobi Desert. Pathogens. 2025; 14(9):870. https://doi.org/10.3390/pathogens14090870
Chicago/Turabian StyleCanziani, Sabrina, Davide Lelli, Paolo Agnelli, Claudio Augugliaro, Munkhtsetseg Bazarragchaa, Sandro Bertolino, Marco Carlomagno, Gantulga Davaakhuu, Massimo Delledonne, Fabrizio Gili, and et al. 2025. "Exploring Bat–Virus Interactions: Insights from a Study in the Gobi Desert" Pathogens 14, no. 9: 870. https://doi.org/10.3390/pathogens14090870
APA StyleCanziani, S., Lelli, D., Agnelli, P., Augugliaro, C., Bazarragchaa, M., Bertolino, S., Carlomagno, M., Davaakhuu, G., Delledonne, M., Gili, F., Fani, R., Moreno, A., Nasanbat, B., Riga, F., Rossato, M., Trogu, T., Vincenzi, L., Uuganbayar, U., Lavazza, A., & Zaccaroni, M. (2025). Exploring Bat–Virus Interactions: Insights from a Study in the Gobi Desert. Pathogens, 14(9), 870. https://doi.org/10.3390/pathogens14090870