Targeted Whole Genome Sequencing of African Swine Fever Virus and Classical Swine Fever Virus on the MinION Portable Sequencing Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Ethics Statement
2.2. Nucleic Acid Extraction and Quantitative Real-Time PCR
2.2.1. African Swine Fever Virus DNA Extraction and Quantitation
2.2.2. Classical Swine Fever Virus RNA Extraction and Quantitation
2.3. Primer Design
2.3.1. African Swine Fever Virus
2.3.2. Classical Swine Fever Virus
2.4. Whole Genome Amplification
2.4.1. African Swine Fever Virus
2.4.2. Classical Swine Fever Virus
2.5. Sequencing Library Preparation and MinION Sequencing
3. Results
3.1. ASFV AmpliSeq Protocol
3.2. CSFV AmpliSeq Protocol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef]
- Vilem, A.; Nurmoja, I.; Niine, T.; Riit, T.; Nieto, R.; Viltrop, A.; Gallardo, C. Molecular Characterization of African Swine Fever Virus Isolates in Estonia in 2014–2019. Pathogens 2020, 9, 582. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zhang, X.; He, S.; Chen, Y.; Liu, X.; Guo, C. Genetic Characterization and Variation of African Swine Fever Virus China/GD/2019 Strain in Domestic Pigs. Pathogens 2022, 11, 97. [Google Scholar] [CrossRef]
- Dixon, L.K.; Sun, H.; Roberts, H. African Swine Fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef]
- Dixon, L.K.; Chapman, D.A.G.; Netherton, C.L.; Upton, C. African Swine Fever Virus Replication and Genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef]
- Spinard, E.; Dinhobl, M.; Tesler, N.; Birtley, H.; Signore, A.V.; Ambagala, A.; Masembe, C.; Borca, M.V.; Gladue, D.P. A Re-Evaluation of African Swine Fever Genotypes Based on P72 Sequences Reveals the Existence of Only Six Distinct P72 Groups. Viruses 2023, 15, 2246. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, E.; Huang, L.; Ding, L.; Zhu, Y.; Zhang, J.; Shen, D.; Zhang, X.; Zhang, Z.; Ren, T.; et al. Highly Lethal Genotype I and II Recombinant African Swine Fever Viruses Detected in Pigs. Nat. Commun. 2023, 14, 3096. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ganges, L.; Dixon, L.K.; Bu, Z.; Zhao, D.; Truong, Q.L.; Richt, J.A.; Jin, M.; Netherton, C.L.; Benarafa, C.; et al. International African Swine Fever Workshop: Critical Issues That Need to Be Addressed for ASF Control. Viruses 2024, 16, 4. [Google Scholar] [CrossRef]
- Thiel, H.-J.; Stark, R.; Weiland, E.; Rumenapf, T.; Meyers, G. Hog Cholera Virus: Molecular Composition of Virions from a Pestivirus. J. Virol. 1991, 65, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical Swine Fever—An Updated Review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef]
- Chander, V.; Nandi, S.; Ravishankar, C.; Upmanyu, V.; Verma, R. Classical Swine Fever in Pigs: Recent Developments and Future Perspectives. Anim. Health Res. Rev. 2014, 15, 87–101. [Google Scholar] [CrossRef]
- Liu, Y.; Bahoussi, A.N.; Wang, P.-H.; Wu, C.; Xing, L. Complete Genome Sequences of Classical Swine Fever Virus: Phylogenetic and Evolutionary Analyses. Front. Microbiol. 2022, 13, 1021734. [Google Scholar] [CrossRef] [PubMed]
- WOAH. 3.9.1 African Swine Fever (Infection with African Swine Fever Virus. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; WOAH: Paris, France, 2023. [Google Scholar]
- WOAH. 3.9.3 Classical Swine Fever (Infection with Classical Swine Fever Virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; WOAH: Paris, France, 2023. [Google Scholar]
- Bastos, A.D.S.; Penrith, M.L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping Field Strains of African Swine Fever Virus by Partial P72 Gene Characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef]
- Mulumba-Mfumu, L.K.; Achenbach, J.E.; Mauldin, M.R.; Dixon, L.K.; Tshilenge, C.G.; Thiry, E.; Moreno, N.; Blanco, E.; Saegerman, C.; Lamien, C.E.; et al. Genetic Assessment of African Swine Fever Isolates Involved in Outbreaks in the Democratic Republic of Congo Between 2005 and 2012 Reveals Co-Circulation of P72 Genotypes I, IX and XIV, Including 19 Variants. Viruses 2017, 9, 31. [Google Scholar] [CrossRef]
- Gallardo, C.; Mwaengo, D.M.; MacHaria, J.M.; Arias, M.; Taracha, E.A.; Soler, A.; Okoth, E.; Martín, E.; Kasiti, J.; Bishop, R.P. Enhanced Discrimination of African Swine Fever Virus Isolates through Nucleotide Sequencing of the P54, P72, and PB602L (CVR) Genes. Virus Genes 2009, 38, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Malogolovkin, A.; Burmakina, G.; Titov, I.; Sereda, A.; Gogin, A.; Baryshnikova, E.; Kolbasov, D. Comparative Analysis of African Swine Fever Virus Genotypes and Serogroups. Emerg. Infect. Dis. J. 2015, 21, 312. [Google Scholar] [CrossRef]
- Postel, A.; Schmeiser, S.; Bernau, J.; Meindl-Boehmer, A.; Pridotkas, G.; Dirbakova, Z.; Mojzis, M.; Becher, P. Improved Strategy for Phylogenetic Analysis of Classical Swine Fever Virus Based on Full-Length E2 Encoding Sequences. Vet. Res. 2012, 43, 50. [Google Scholar] [CrossRef]
- Forth, J.H.; Calvelage, S.; Fischer, M.; Hellert, J.; Sehl-Ewert, J.; Roszyk, H.; Deutschmann, P.; Reichold, A.; Lange, M.; Thulke, H.H.; et al. African Swine Fever Virus–Variants on the Rise. Emerg. Microbes. Infect. 2023, 12, 2146537. [Google Scholar] [CrossRef] [PubMed]
- Heather, J.M.; Chain, B. The Sequence of Sequencers: The History of Sequencing DNA. Genomics 2016, 107, 1–8. [Google Scholar] [CrossRef]
- McDowell, C.D.; Bold, D.; Trujillo, J.D.; Meekins, D.A.; Keating, C.; Cool, K.; Kwon, T.; Madden, D.W.; Artiaga, B.L.; Balaraman, V.; et al. Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia. Viruses 2022, 14, 2698. [Google Scholar] [CrossRef]
- Sunwoo, S.Y.; Pérez-Núñez, D.; Morozov, I.; Sánchez, E.G.; Gaudreault, N.N.; Trujillo, J.D.; Mur, L.; Nogal, M.; Madden, D.; Urbaniak, K.; et al. Dna-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines 2019, 7, 12. [Google Scholar] [CrossRef]
- Zsak, L.; Borca, M.V.; Risatti, G.R.; Zsak, A.; French, R.A.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Callahan, J.D.; Nelson, W.M.; et al. Preclinical Diagnosis of African Swine Fever in Contact-Exposed Swine by a Real-Time PCR Assay. J. Clin. Microbiol. 2005, 43, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Eberling, A.J.; Bieker-Stefanelli, J.; Reising, M.M.; Siev, D.; Martin, B.M.; McIntosh, M.T.; Beckham, T.R. Development, Optimization, and Validation of a Classical Swine Fever Virus Real-Time Reverse Transcription Polymerase Chain Reaction Assay. J. Vet. Diagn. Investig. 2011, 23, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Malogolovkin, A.; Burmakina, G.; Tulman, E.R.; Delhon, G.; Diel, D.G.; Salnikov, N.; Kutish, G.F.; Kolbasov, D.; Rock, D.L. African Swine Fever Virus CD2v and C-Type Lectin Gene Loci Mediate Serological Specificity. J. Gen. Virol. 2015, 96, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Spinard, E.; O’Donnell, V.; Vuono, E.; Rai, A.; Davis, C.; Ramirez-Medina, E.; Espinoza, N.; Valladares, A.; Borca, M.V.; Gladue, D.P. Full Genome Sequence for the African Swine Fever Virus Outbreak in the Dominican Republic in 1980. Sci. Rep. 2023, 13, 1024. [Google Scholar] [CrossRef]
- Leifer, I.; Hoffmann, B.; Höper, D.; Rasmussen, T.B.; Blome, S.; Strebelow, G.; Höreth-Böntgen, D.; Staubach, C.; Beer, M. Molecular Epidemiology of Current Classical Swine Fever Virus Isolates of Wild Boar in Germany. J. Gen. Virol. 2010, 91, 2687–2697. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Nguyen, B.T.P.; Do, D.T.; Nguyen, T.Q.; Nguyen, D.T.M.; Nguyen, M.N. Genetic Diversity and Molecular Characterization of Classical Swine Fever Virus Envelope Protein Genes E2 and Erns Circulating in Vietnam from 2017 to 2019. Infect. Genet. Evol. 2021, 96, 105140. [Google Scholar] [CrossRef]
Primer | Sequence | Primer Pool | Position 1 |
---|---|---|---|
ASFV-1-F | GCGTTCATTTCACAAGATGCG | D | 378–398 |
ASFV-1-R | TGGGATTTGTACCAGCAGGG | D | 10,532–10,551 |
ASFV-2-F | GGGCTTTGGGTCAGAACAGT | B | 10,395–10,414 |
ASFV-2-R | ACAAGCTATACACGGCTCTCAG | B | 20,921–20,942 |
ASFV-3-F | TGCATTCCGATATCTCATCATCTGT | A | 20,802–20,826 |
ASFV-3-R | TACGGCGTTAGTGAAGGCTG | A | 31,212–31,231 |
ASFV-4-F | CTTGGCACCTAGCTCTCGAC | B | 31,090–31,109 |
ASFV-4-R | ACGATTTAGCACAACCATGCG | B | 40,709–40,729 |
ASFV-5-F | GCCAATTCCTGAACCTGATGC | C | 40,576–40,596 |
ASFV-5-R | AAACGTGTTGTCCCTCAGCA | C | 50,671–50,690 |
ASFV-6-F | GAAACGACTGCACGAATGGG | B | 50,546–50,565 |
ASFV-6-R | TGTCGTGCTTGTTTGGTACG | B | 60,647–60,666 |
ASFV-7-F | TGAAACAATACCCCGGCCTC | A | 60,513–60,532 |
ASFV-7-R | CATTGAACGCCCGCAACATC | A | 70,924–70,943 |
ASFV-8-F | TTACCTCCTGCCGACCATTG | C | 70,786–70,805 |
ASFV-8-R | TCCCTGTGTTTCTTGAGCGG | C | 80,652–80,671 |
ASFV-9-F | AGACCAAACAGCAAAACGCA | A | 80,520–80,539 |
ASFV-9-R | CAGTTGGTAGGGCTTGTGGT | A | 90,711–90,730 |
ASFV-10-F | AGGATCCCTACAGCACGATG | B | 90,583–90,602 |
ASFV-10-R | TTTTCCCGTCAAAGCAACCG | B | 100,848–100,867 |
ASFV-11-F | GGGAAGCGGCACTGTACTAT | A | 100,718–100,737 |
ASFV-11-R | AAGCAACTCAACCCGCAAAC | A | 110,625–110,644 |
ASFV-12-F | GAAAGAAGGGTGTAGTCAAA | C | 110,432–110,451 |
ASFV-12-R | ACACAAATGTCCAACTAGCTC | C | 120,618–120,638 |
ASFV-13-F | GTCTCCTAGGGGCATAAGCG | A | 120,460–120,479 |
ASFV-13-R | AGGCAGGGCTTAATGCAAGA | A | 130,282–130,301 |
ASFV-14-F | GCGAGGAACAGAGCCCATAA | C | 130,150–130,169 |
ASFV-14-R | AAAGCCTATTGACTGAACCCGT | C | 140,875–140,896 |
ASFV-15-F | ATGAAAATACTCCCCGTGGCA | A | 140,737–140,757 |
ASFV-15-R | GTATCAGCGGGGTAAGCAGT | A | 150,238–150,257 |
ASFV-16-F | GCGAGCAAAGCTGAGATACG | B | 150,100–150,119 |
ASFV-16-R | AACCTTTTCCGGGTACGTGA | B | 160,703–160,722 |
ASFV-17-F | GCCGCTTTGCCTCATTTACG | C | 160,565–160,584 |
ASFV-17-R | ACGTCCATCGTTCAAGGAGT | C | 170,849–170,868 |
ASFV-18-F | ATTGCGTTGCGATCCAGTTC | B | 170,712–170,731 |
ASFV-18-R | ACCCGAGAACGCTTCACAA | B | 180,298–180,316 |
ASFV-19-F | AACAAGGGAACGATGGGAAG | E | 179,039–179,058 |
ASFV-19-R | CTGCTGTAGGTGTCAAAGAT | E | 190,225–190,244 |
Primer | Sequence | Position 1 |
---|---|---|
CSFV-1-F | AWGCCCAAGACRCACCTTAAYC | 118–380 |
CSFV-1-R | GGTTGYGDCATCTGRCARAAGT | 6260–6721 |
CSFV-2-F | ATAGGDGAGATGAAGGARGG | 5927–6253 |
CSFV-2-R | TAGTGTGGTAACWYGAGGTAG | 5565–12,205 |
Animal ID | DPC 1 | Type | Strain | Genotype | Ct | Reference Length | Mapped Reads | Total Reads | % Reads Mapped | Average Coverage | % Reference Covered | Average Read Length |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arm07 Cos-1 2 | P3 3 | Cell culture | Arm07 4 | II | 27 | 190,584 | 51,134 | 65,081 | 78.57 | 1017.61 | 99 | 3749 |
63 | 7 | Blood | Arm07 4 | II | 16 | 190,584 | 127,541 | 158,104 | 80.67 | 2138.01 | 99 | 3157 |
67 | 9 | Blood | Arm07 4 | II | 19 | 190,584 | 149,958 | 184,043 | 81.48 | 2323.76 | 99 | 2928 |
87 | 7 | Blood | E70 6 | I | 25 | 181,187 | 59,820 | 91,435 | 97.37 | 1081.24 | 85 | 3357 |
190 | 7 | Blood | Arm07 4 | II | 15 | 190,584 | 60,571 | 80,273 | 75.46 | 864 | 99 | 2681 |
192 | 7 | Blood | Arm07 4 | II | 16 | 190,584 | 85,585 | 112,479 | 76.09 | 1226.02 | 99 | 2694 |
303 | 7 | Blood | MNG-19 5 | II | 19 | 187,868 | 120,141 | 166,122 | 72.32 | 2124.92 | 99 | 3306 |
303 | 7 | Spleen | MNG-19 5 | II | 19 | 187,868 | 155,498 | 207,421 | 74.97 | 2511.41 | 99 | 3020 |
304 | 7 | Blood | Arm07 4 | II | 25 | 190,584 | 64,340 | 308,436 | 20.86 | 440.05 | 96 | 1242 |
305 | 7 | Spleen | Arm07 4 | II | 21 | 190,584 | 136,574 | 173,381 | 78.77 | 2193.54 | 99 | 3035 |
306 | 6 | Blood | MNG-19 5 | II | 22 | 187,868 | 423,361 | 575,567 | 73.56 | 2313.04 | 99 | 1019 |
307 | 3 | Blood | MNG-19 5 | II | 22 | 187,868 | 264,992 | 390,731 | 67.82 | 1465.03 | 99 | 1029 |
308 | 7 | Blood | Arm07 4 | II | 21 | 190,584 | 310,219 | 426,981 | 72.65 | 1842.86 | 99 | 1117 |
309 | 7 | Blood | Arm07 4 | II | 19 | 190,584 | 96,240 | 123,894 | 77.68 | 1726.88 | 99 | 3378 |
310 | 7 | Blood | MNG-19 5 | II | 19 | 187,868 | 66,069 | 88,936 | 74.29 | 1079.36 | 99 | 3047 |
311 | 7 | Blood | Arm07 4 | II | 19 | 190,584 | 98,755 | 129,042 | 76.53 | 1676.69 | 99 | 3187 |
312 | 7 | Blood | Arm07 4 | II | 20 | 190,584 | 131,299 | 173,421 | 75.71 | 2299.50 | 99 | 3297 |
314 | 7 | Blood | MNG-19 5 | II | 22 | 187,868 | 307,810 | 421,638 | 73 | 1714.75 | 99 | 1037 |
511 | 7 | Blood | Arm07 4 | II | 20 | 190,584 | 121,736 | 152,400 | 79.88 | 1912.97 | 99 | 2970 |
635 | 7 | Blood | Arm07 4 | II | 14 | 190,584 | 165,992 | 215,116 | 77.16 | 2654.20 | 99 | 3022 |
Strain | Genotype | Ct | Reference Length | Mapped Reads | Total Reads | % Reads Mapped | Average Coverage | % Reference Covered | Average Read Length |
---|---|---|---|---|---|---|---|---|---|
Alfort 1 | 1.1 | 33 | 12,298 | 85,869 | 128,711 | 66.7 | 8643.29 | 97 | 1235 |
Brescia 2 | 1.2 | 17 | 12,283 | 147,575 | 191,259 | 77.2 | 20,355.95 | 98 | 1683 |
Bavaro 3 | 1.3 | 23 | 11,955 | 61,093 | 80,719 | 75.7 | 10,736.37 | 99 | 2112 |
PAV250 2 | 1.2 | 32 | 12,283 | 57,373 | 120,788 | 47.5 | 6275.58 | 97 | 1337 |
Guatemala 3 | 1.3 | 26 | 11,955 | 75,909 | 85,462 | 88.8 | 11,802.41 | 99 | 1868 |
Paderborn 4 | 2.1 | 30 | 12,296 | 102,050 | 147,935 | 68.9 | 13,308.74 | 97 | 1599 |
Parma 98 4 | 2.2 | 31 | 12,296 | 128,430 | 173,185 | 74.2 | 13,992.47 | 97 | 1333 |
Germany 1995 5 | 2.3 | 32 | 12,296 | 112,426 | 151,928 | 73.9 | 15,213.59 | 97 | 1659 |
Germany 1999 6 | 2.3 | 29 | 12,296 | 123,679 | 142,929 | 86.5 | 16,402.40 | 97 | 1627 |
Congenital Tremor 7 | 3.1 | 32 | 12,298 | 75,708 | 103,765 | 72.9 | 10,770.79 | 97 | 1750 |
Kanagawa 7 | 3.4 | 34 | 12,298 | 87,635 | 146,523 | 59.8 | 10,305.39 | 97 | 1447 |
Animal ID | DPC 1 | Sample Type | Strain | Genotype | Ct | Reference Length | Mapped Reads | Total Reads | % Reads Mapped | Average Coverage | % Reference Covered | Average Read Length |
---|---|---|---|---|---|---|---|---|---|---|---|---|
169 | 5 | Serum | Brescia * | 1.2 | 24.84 | 12,283 | 133,564 | 165,617 | 80.6 | 19,738.50 | 98 | 1802 |
226 | 5 | Serum | Brescia * | 1.2 | 23.63 | 12,283 | 121,651 | 148,444 | 81.9 | 19,799.28 | 98 | 1984 |
226 | 5 | Mandibular LN 2 | Brescia * | 1.2 | 22.7 | 12,283 | 88,935 | 138,679 | 64.1 | 13,850.58 | 97 | 1901 |
287 | 5 | Serum | Brescia * | 1.2 | 20.89 | 12,283 | 109,336 | 142,280 | 76.8 | 17,646.33 | 98 | 1970 |
348 | 5 | Serum | Bavaro ‡ | 1.3 | 28.83 | 11,955 | 98,559 | 106,690 | 92.4 | 15,503.91 | 99 | 1888 |
353 | 5 | Serum | Brescia * | 1.2 | 20.09 | 12,283 | 107,481 | 133,827 | 80.3 | 15,333.07 | 98 | 1739 |
354 | 5 | Serum | Brescia * | 1.2 | 21.26 | 12,283 | 112,049 | 143,418 | 78.1 | 15,997.95 | 98 | 1742 |
358 | 5 | Serum | Bavaro ‡ | 1.3 | 27.3 | 11,955 | 184,126 | 203,348 | 90.5 | 30,853.70 | 99 | 2007 |
374 | 5 | Serum | Bavaro ‡ | 1.3 | 29.15 | 11,955 | 88,296 | 106,370 | 83 | 11,465.05 | 99 | 1563 |
3246 | 5 | Serum | Bavaro ‡ | 1.3 | 26.43 | 11,955 | 118,471 | 131,482 | 90.1 | 18,171.38 | 99 | 1841 |
3248 | 5 | Serum | Bavaro ‡ | 1.3 | 29.36 | 11,955 | 89,295 | 100,880 | 88.5 | 10,791.20 | 99 | 1445 |
169 | 7 | Serum | Brescia * | 1.2 | 16.1 | 12,283 | 75,350 | 94,675 | 79.6 | 10,040.89 | 98 | 1625 |
287 | 7 | Serum | Brescia * | 1.2 | 16.9 | 12,283 | 132,993 | 167,506 | 79.4 | 17,255.71 | 98 | 1582 |
348 | 7 | Serum | Bavaro ‡ | 1.3 | 25.5 | 11,955 | 92,379 | 104,221 | 88.6 | 12,824.24 | 99 | 1664 |
358 | 7 | Serum | Bavaro ‡ | 1.3 | 26.1 | 11,955 | 88,799 | 103,837 | 85.5 | 13,585.76 | 99 | 1833 |
374 | 7 | Serum | Bavaro ‡ | 1.3 | 27.03 | 11,955 | 57,973 | 66,023 | 87.8 | 7522.64 | 99 | 1553 |
3246 | 7 | Serum | Bavaro ‡ | 1.3 | 19.98 | 11,955 | 108,501 | 117,808 | 92.1 | 16,394.22 | 99 | 1809 |
3248 | 7 | Serum | Bavaro ‡ | 1.3 | 29.25 | 11,955 | 100,504 | 110,978 | 90.6 | 13,020.98 | 99 | 1548 |
169 | 11 | Tonsil | Brescia * | 1.2 | 17 | 12,283 | 147,575 | 191,259 | 77.2 | 20,355.95 | 98 | 1683 |
348 | 11 | Tonsil | Bavaro ‡ | 1.3 | 23 | 11,955 | 61,093 | 80,719 | 75.7 | 10,736.37 | 99 | 2112 |
3246 | 11 | Tonsil | Bavaro ‡ | 1.3 | 25 | 11,955 | 88,948 | 103,779 | 85.8 | 14,534.34 | 99 | 1955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDowell, C.D.; Kwon, T.; Assato, P.; Mantlo, E.; Trujillo, J.D.; Gaudreault, N.N.; Caserta, L.C.; Morozov, I.; Souza-Neto, J.A.; Pogranichniy, R.M.; et al. Targeted Whole Genome Sequencing of African Swine Fever Virus and Classical Swine Fever Virus on the MinION Portable Sequencing Platform. Pathogens 2025, 14, 804. https://doi.org/10.3390/pathogens14080804
McDowell CD, Kwon T, Assato P, Mantlo E, Trujillo JD, Gaudreault NN, Caserta LC, Morozov I, Souza-Neto JA, Pogranichniy RM, et al. Targeted Whole Genome Sequencing of African Swine Fever Virus and Classical Swine Fever Virus on the MinION Portable Sequencing Platform. Pathogens. 2025; 14(8):804. https://doi.org/10.3390/pathogens14080804
Chicago/Turabian StyleMcDowell, Chester D., Taeyong Kwon, Patricia Assato, Emily Mantlo, Jessie D. Trujillo, Natasha N. Gaudreault, Leonardo C. Caserta, Igor Morozov, Jayme A. Souza-Neto, Roman M. Pogranichniy, and et al. 2025. "Targeted Whole Genome Sequencing of African Swine Fever Virus and Classical Swine Fever Virus on the MinION Portable Sequencing Platform" Pathogens 14, no. 8: 804. https://doi.org/10.3390/pathogens14080804
APA StyleMcDowell, C. D., Kwon, T., Assato, P., Mantlo, E., Trujillo, J. D., Gaudreault, N. N., Caserta, L. C., Morozov, I., Souza-Neto, J. A., Pogranichniy, R. M., Diel, D. G., & Richt, J. A. (2025). Targeted Whole Genome Sequencing of African Swine Fever Virus and Classical Swine Fever Virus on the MinION Portable Sequencing Platform. Pathogens, 14(8), 804. https://doi.org/10.3390/pathogens14080804