Genetic Epidemiology and Resistance Investigations of Clinical Yeasts in Alexandria, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates and Identification
2.2. Short Tandem Repeat (STR) Genotyping
2.3. Resistance Investigation
3. Results
3.1. Species Distribution
3.2. Yeast Identification with Vitek 2 Compact System
3.3. STR Genotyping of Non-Albicans Yeasts
3.4. Resistance Investigation of Blood Culture Isolates and Rare Species
4. Discussion
4.1. Identification of Yeasts Using a Vitek 2 Compact System and Antifungal Resistance
4.2. Species Distribution
4.3. Genetic Relatedness as Assessed by STR Genotyping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFST | Antifungal susceptibility testing |
CLSI | Clinical and Laboratory Standards Institute |
ICU | Intensive care unit |
MALDI-TOF MS | Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry |
STR | Short tandem repeat |
VVC | Vulvovaginal candidiasis |
References
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Lass-Florl, C.; Kanj, S.S.; Govender, N.P.; Thompson, G.R., 3rd; Ostrosky-Zeichner, L.; Govrins, M.A. Invasive candidiasis. Nat. Rev. Dis. Primers 2024, 10, 20. [Google Scholar] [CrossRef]
- Goncalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, W.A.; Dhar, R. Candiduria: Evidence-based approach to management, are we there yet? J. Mycol. Med. 2017, 27, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Sprute, R.; Bassetti, M.; Chen, S.C.A.; Groll, A.H.; Kurzai, O.; Lass-Flörl, C.; Ostrosky-Zeichner, L.; Rautemaa-Richardson, R.; Revathi, G.; et al. Global guideline for the diagnosis and management of candidiasis: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2025, 25, e280–e293. [Google Scholar] [CrossRef]
- Gudisa, R.; Harchand, R.; Rudramurthy, S.M. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics 2024, 14, 520. [Google Scholar] [CrossRef]
- Guinsburg Hamburger, F.; Cristina Gales, A.; Lopes Colombo, A. Systematic Review of Candidemia in Brazil: Unlocking Historical Trends and Challenges in Conducting Surveys in Middle-Income Countries. Mycopathologia 2024, 189, 60. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Arikan-Akdagli, S.; Jørgensen, K.M.; Barac, A.; Steinmann, J.; Toscano, C.; Arsic Arsenijevic, V.; Sartor, A.; Lass-Flörl, C.; Hamprecht, A.; et al. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study. J. Infect. 2023, 87, 428–437. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Driemeyer, C.; Falci, D.R.; Oladele, R.O.; Bongomin, F.; Ocansey, B.K.; Govender, N.P.; Hoenigl, M.; Gangneux, J.P.; Lass-Flörl, C.; Cornely, O.A.; et al. The current state of clinical mycology in Africa: A European Confederation of Medical Mycology and International Society for Human and Animal Mycology survey. Lancet Microbe 2022, 3, e464–e470. [Google Scholar] [CrossRef]
- van Schalkwyk, E.; Mpembe, R.S.; Thomas, J.; Shuping, L.; Ismail, H.; Lowman, W.; Karstaedt, A.S.; Chibabhai, V.; Wadula, J.; Avenant, T.; et al. Epidemiologic Shift in Candidemia Driven by Candida auris, South Africa, 2016–2017. Emerg. Infect. Dis. 2019, 25, 1698–1707. [Google Scholar] [CrossRef]
- Ahaik, I.; Nunez-Rodríguez, J.C.; Abrini, J.; Bouhdid, S.; Gabaldón, T. Assessing Diagnosis of Candida Infections: A Study on Species Prevalence and Antifungal Resistance in Northern Morocco. J. Fungi 2024, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Sellami, A.; Sellami, H.; Néji, S.; Makni, F.; Abbes, S.; Cheikhrouhou, F.; Chelly, H.; Bouaziz, M.; Hammami, B.; Ben Jemaa, M.; et al. Antifungal susceptibility of bloodstream Candida isolates in Sfax hospital: Tunisia. Mycopathologia 2011, 171, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Reda, N.M.; Hasan, R.M.; Salem, S.T.; Yousef, R.H.A. Prevalence and species distribution of Candida bloodstream infection in children and adults in two teaching university hospitals in Egypt: First report of Candida kefyr. Infection 2023, 51, 389–395. [Google Scholar] [CrossRef]
- Aziz, H.S.A.; Ismail, D.K.; Mohammed, N.S.A.; Elgendy, M.O.; Bassiouny, D.M. Distribution and antifungal susceptibility profiles of Candida species isolated from candidemia patients admitted to Egyptian tertiary hospitals: A cross-sectional study. BMC Infect. Dis. 2024, 24, 1177. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, E.; Vella, A.; Vaccaro, L.; Torelli, R.; Posteraro, P.; Ricciardi, W.; Sanguinetti, M.; Posteraro, B. Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. J. Clin. Microbiol. 2014, 52, 1453–1458. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; van Haren, M.H.I.; Chowdhary, A.; Meis, J.F.; de Groot, T. Development and Application of a Short Tandem Repeat Multiplex Typing Assay for Candida tropicalis. Microbiol. Spectr. 2023, 11, e0461822. [Google Scholar] [CrossRef]
- van Haren, M.H.I.; de Groot, T.; Spruijtenburg, B.; Jain, K.; Chowdhary, A.; Meis, J.F. Development of a Multiplex PCR Short Tandem Repeat Typing Scheme for Candida krusei. J. Clin. Microbiol. 2022, 60, e0203221. [Google Scholar] [CrossRef]
- Diab-Elschahawi, M.; Forstner, C.; Hagen, F.; Meis, J.F.; Lassnig, A.M.; Presterl, E.; Klaassen, C.H.W. Microsatellite genotyping clarified conspicuous accumulation of Candida parapsilosis at a cardiothoracic surgery intensive care unit. J. Clin. Microbiol. 2012, 50, 3422–3426. [Google Scholar] [CrossRef]
- Abbes, S.; Sellami, H.; Sellami, A.; Hadrich, I.; Amouri, I.; Mahfoudh, N.; Neji, S.; Makni, F.; Makni, H.; Ayadi, A. Candida glabrata strain relatedness by new microsatellite markers. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 83–91. [Google Scholar] [CrossRef]
- de Groot, T.; Spruijtenburg, B.; Parnell, L.A.; Chow, N.A.; Meis, J.F. Optimization and Validation of Candida auris Short Tandem Repeat Analysis. Microbiol. Spectr. 2022, 10, e0264522. [Google Scholar] [CrossRef] [PubMed]
- CLSI standard M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- Vandeputte, P.; Larcher, G.; Bergès, T.; Renier, G.; Chabasse, D.; Bouchara, J.P. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis. Antimicrob. Agents Chemother. 2005, 49, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Silva, F.; Henriques, M.; Azeeredo, J.; Oliveira, R.; Faustino, A. Candida clinical species identification: Molecular and biochemical methods. Ann. Microbiol. 2010, 60, 105–112. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; Meijer, E.F.J.; Xiao, M.; Shawky, S.M.; Meis, J.F.; de Groot, T.; El-Kholy, M.A. Genotyping and susceptibility testing uncovers large azole-resistant Candida tropicalis clade in Alexandria, Egypt. J. Glob. Antimicrob. Resist. 2023, 34, 99–105. [Google Scholar] [CrossRef]
- Siopi, M.; Georgiou, P.C.; Paranos, P.; Beredaki, M.I.; Tarpatzi, A.; Kalogeropoulou, E.; Damianidou, S.; Sasilakopoulou, A.; Karakosta, P.; Pournaras, S.; et al. Increase in candidemia cases and emergence of fluconazole-resistant Candida parapsilosis and C. auris isolates in a tertiary care academic hospital during the COVID-19 pandemic, Greece, 2020 to 2023. Eurosurveillance 2024, 29, 2300661. [Google Scholar] [CrossRef]
- Ibe, C.; Pohl, C.H. Epidemiology and drug resistance among Candida pathogens in Africa: Candida auris could now be leading the pack. Lancet Microbe 2024, 6, 100996. [Google Scholar] [CrossRef]
- Arastehfar, A.; Wickes, B.L.; Ilkit, M.; Pincus, D.H.; Daneshnia, F.; Pan, W.; Fang, W.; Boekhout, T. Identification of Mycoses in Developing Countries. J. Fungi 2019, 5, 90. [Google Scholar] [CrossRef]
- Unal, N.; Spruijtenburg, B.; Arastehfar, A.; Gümral, R.; de Groot, T.; Meijer, E.F.J.; Türk-Dağı, H.; Birinci, A.; Hilmioğlu-Polat, S.; Meis, J.F.; et al. Multicentre Study of Candida parapsilosis Blood Isolates in Türkiye Highlights an Increasing Rate of Fluconazole Resistance and Emergence of Echinocandin and Multidrug Resistance. Mycoses 2024, 67, e70000. [Google Scholar] [CrossRef]
- Sharma, M.; Chakrabarti, A. Candidiasis and Other Emerging Yeasts. Curr. Fungal Infect. Rep. 2023, 17, 15–24. [Google Scholar] [CrossRef]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. J. Antimicrob. Chemother. 2020, 75, 1194–1205. [Google Scholar] [CrossRef]
- Ricotta, E.E.; Lai, Y.L.; Babiker, A.; Strich, J.R.; Kadri, S.S.; Lionakis, M.S.; Prevots, D.R.; Adjemian, J. Invasive Candidiasis Species Distribution and Trands, United States, 2009–2017. J. Infect. Dis. 2021, 223, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, J.; Kim, H.Y.; Dao, A.; Kidd, S.; Alastruey-Izquierdo, A.; Sorrell, T.C.; Tacconelli, E.; Chakrabarti, A.; Harrison, T.S.; Bongomin, F.; et al. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization Fungal Priority Pathogens List. Med. Mycol. 2024, 62, myae041. [Google Scholar] [CrossRef] [PubMed]
- Mtibaa, L.; Souid, H.; Jemli, B.; Hajjej, Z.; Halweni, C.; Rebal, A.; Mhamed, R.B.; Akkari, K.; Ferjani, M. Kodamaea ohmeri, An Emerging Yeast in Tunisia: First Identification in Three Case Reports and Literature Review. J. Med. Microb. Diagn. 2019, 8, 100299. [Google Scholar]
- Mollaschi, E.M.G.; Iskandar, E.N.; Esposto, M.C.; Prigitano, A.; Rigano, G.; Rotola, G.; Caneva, G.; Cavanna, C. Catheter-related blood stream infection caused by Millerozyma farinosa in an immunocompetent patient: A case report and a brief review of the literature. New. Microbiol. 2022, 45, 142–147. [Google Scholar]
- Hwang, I.J.; Kwon, Y.J.; Lim, H.J.; Hong, K.H.; Lee, H.; Yong, D.; Won, E.J.; Byun, S.A.; Lee, G.Y.; Kim, S.H.; et al. Nosocomial transmission of fluconazole-resistant Candida glabrata bloodstream isolates revealed by whole-genome sequencing. Microbiol. Spectr. 2024, 12, e0088324. [Google Scholar] [CrossRef]
- Daneshnia, F.; de Almeida Júnior, J.N.; Ilkit, M.; Lombardi, L.; Perry, A.M.; Gao, M.; Nobile, C.J.; Egger, M.; Perlin, D.S.; Zhai, B.; et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: Current framework and future research roadmap. Lancet Microbe 2023, 4, e470–e480. [Google Scholar] [CrossRef] [PubMed]
- Kohlenberg, A.; Monnet, D.L.; Plachouras, D.; Candida auris survey collaborative group. Increasing number of cases and outbreaks caused by Candida auris in the EU/EEA, 2020 to 2021. Eurosurveillance 2022, 27, 2200846. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; Meis, J.F.; Verweij, P.E.; de Groot, T.; Meijer, E.F.J. Short Tandem Repeat Genotyping of Medically Important Fungi: A Comprehensive Review of a Powerful Tool with Extensive Future Potential. Mycopathologia 2024, 189, 72. [Google Scholar] [CrossRef]
- Karakoyun, A.S.; Spruijtenburg, B.; Unal, N.; Meijer, E.F.J.; Sucu, M.; Hilmioğlu-Polat, S.; Meis, J.F.; de Groot, T.; Ilkit, M. Molecular typing and antifungal susceptibility profile of Candida krusei bloodstream isolates from Türkiye. Med. Mycol. 2024, 62, myae005. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; Baqueiro, C.C.S.Z.; Colombo, A.L.; Meijer, E.F.J.; de Almeida , J.N., Jr.; Berrio, I.; Fernández, N.B.; Chaves, G.M.; Meis, J.F.; de Groot, T.; et al. Short Tandem Repeat Genotyping and Antifungal Susceptibility Testing of Latin American Candida tropicalis Isolates. J. Fungi 2023, 9, 207. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; De Carolis, E.; Magri, C.; Meis, J.F.; Sanguinetti, M.; de Groot, T.; Meijer, E.F.J. Genotyping of Candida tropicalis isolates uncovers nosocomial transmission of two lineages in Italian tertiary-care hospital. J. Hosp. Infect. 2024, 155, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sasse, C.; Dunkel, N.; Schäfer, T.; Schneider, S.; Dierolf, F.; Ohlsen, K.; Morschhäuer, J. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 2012, 86, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Naicker, S.D.; Maphanga, T.G.; Chow, N.A.; Allam, M.; Kwenda, S.; Ismail, A.; Govender, N.P. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg. Microbes Infect. 2021, 10, 1300–1308. [Google Scholar] [CrossRef]
- Maxwell, S.Y.; Abd-Elmonsef, M. Investigation of Candida auris in Tanta University Hospitals, Egypt. Egypt. J. Med. Microbiol. 2022, 21, 83–88. [Google Scholar] [CrossRef]
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The Landscape of Candidemia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef] [PubMed]
Species According to Vitek | n Total | n Incorrect (%) | Species Misidentified (n) |
---|---|---|---|
Candida tropicalis | 167 | 18 (11) | N. glabratus (8), C. parapsilosis (3), C. albicans (2), P. kudriavzevii (2), C. orthopsilosis (1), K. ohmeri (1), M. capitatus (1) |
Nakaseomyces glabratus | 64 | 5 (8) | C. albicans (3), C. tropicalis (2) |
Candida parapsilosis | 37 | 15 (41) | C. tropicalis (8), C. albicans (3), C. orthopsilosis (2), C. lusitaniae (1) |
Pichia kudriavzevii | 20 | 3 (15) | C. tropicalis (1), C. parapsilosis (1), N. glabratus (1) |
Clavispora lusitaniae | 5 | 3 (60) | C. tropicalis (2), C. parapsilosis (1) |
Candida dubliniensis | 4 | 4 (100) | P. kudriavzevii (2), N. glabratus (2) |
Meyerozyma guilliermondii | 4 | 4 (100) | C. tropicalis (2), C. albicans (1), C. parapsilosis (1) |
Kluyveromyces marxianus | 4 | 2 (50) | C. tropicalis (2) |
Kluyveromyces lactis | 4 | 4 (100) | K. marxianus (4) |
Stephanoascus ciferii | 3 | 3 (100) | C. albicans (2), C. tropicalis (1) |
Candida auris | 2 | 0 (0) | NA |
Pichia norvegensis | 2 | 2 (100) | P. kudriavzevii (1), P. cactophila (1) |
Debaryomyces hansenii | 1 | 1 (100) | C. albicans (1) |
Millerozyma farinosa | 1 | 1 (100) | N. glabratus (1) |
Cryptococcus laurentii | 1 | 1 (100) | C. tropicalis (1) |
Zygosaccharomyces sp. | 1 | 1 (100) | N. glabratus (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spruijtenburg, B.; Melchior do Prado, C.; Kempen, M.v.; Shawky, S.M.; Meis, J.F.; Aparecida Vicente, V.; Queiroz-Telles, F.; Groot, T.d.; El-Kholy, M.A.; Meijer, E.F.J. Genetic Epidemiology and Resistance Investigations of Clinical Yeasts in Alexandria, Egypt. Pathogens 2025, 14, 486. https://doi.org/10.3390/pathogens14050486
Spruijtenburg B, Melchior do Prado C, Kempen Mv, Shawky SM, Meis JF, Aparecida Vicente V, Queiroz-Telles F, Groot Td, El-Kholy MA, Meijer EFJ. Genetic Epidemiology and Resistance Investigations of Clinical Yeasts in Alexandria, Egypt. Pathogens. 2025; 14(5):486. https://doi.org/10.3390/pathogens14050486
Chicago/Turabian StyleSpruijtenburg, Bram, Carolina Melchior do Prado, Mats van Kempen, Sherine M. Shawky, Jacques F. Meis, Vânia Aparecida Vicente, Flavio Queiroz-Telles, Theun de Groot, Mohammed A. El-Kholy, and Eelco F. J. Meijer. 2025. "Genetic Epidemiology and Resistance Investigations of Clinical Yeasts in Alexandria, Egypt" Pathogens 14, no. 5: 486. https://doi.org/10.3390/pathogens14050486
APA StyleSpruijtenburg, B., Melchior do Prado, C., Kempen, M. v., Shawky, S. M., Meis, J. F., Aparecida Vicente, V., Queiroz-Telles, F., Groot, T. d., El-Kholy, M. A., & Meijer, E. F. J. (2025). Genetic Epidemiology and Resistance Investigations of Clinical Yeasts in Alexandria, Egypt. Pathogens, 14(5), 486. https://doi.org/10.3390/pathogens14050486