Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Identification
2.2. DNA Extraction, WGS, and In Silico Detection of Sequence Types
3. Results
3.1. Bacterial Isolate Identification and MLST Analysis
3.2. Novel STs, Their Hosts, and Geographical Distribution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
K. | Klebsiella |
WGS | Whole genomic sequencing |
MLST | Multilocus sequence typing |
ST | Sequence type |
MDR | Multidrug-resistant |
NJ | Neighbor-Joining |
References
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef]
- Poerio, N.; Olimpieri, T.; Henrici De Angelis, L.; de Santis, F.; Thaller, M.C.; D’Andrea, M.M.; Fraziano, M. Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Front. Immunol. 2022, 13, 835417. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Riwu, K.H.P.; Effendi, M.H.; Rantam, F.A.; Khairullah, A.R.; Widodo, A. A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet. World 2022, 15, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm, and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Marques, C.; Menezes, J.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Telo Gama, L.; Pomba, C. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: Population structure, antimicrobial resistance and virulence genes. J. Antimicrob. Chemother. 2019, 74, 594–602. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; de Morais, A.B.C.; Alves, A.C.; Bolaños, C.A.D.; de Paula, C.L.; Portilho, F.V.R.; de Nardi Júnior, G.; Lara, G.H.B.; de Souza Araújo Martins, L.; Moraes, L.S.; et al. Klebsiella-induced infections in domestic species: A case-series study in 697 animals (1997–2019). Braz. J. Microbiol. 2022, 53, 455–464. [Google Scholar] [CrossRef]
- Wendt, C.; Schütt, S.; Dalpke, A.H.; Konrad, M.; Mieth, M.; Trierweiler-Hauke, B.; Weigand, M.A.; Zimmermann, S.; Biehler, K.; Jonas, D. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 563–570. [Google Scholar] [CrossRef]
- Haller, S.; Kramer, R.; Becker, K.; Bohnert, J.A.; Eckmanns, T.; Hans, J.B.; Hecht, J.; Heidecke, C.-D.; Hübner, N.-O.; Kramer, A.; et al. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Euro Surveill. 2019, 24, 1900734. [Google Scholar] [CrossRef]
- Schierack, P.; Walk, N.; Reiter, K.; Weyrauch, K.D.; Wieler, L.H. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology 2007, 153, 3830–3837. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Stamm, I.; Pfeifer, Y.; Wieler, L.H.; Kopp, P.A.; Schønning, K.; Prenger-Berninghoff, E.; Scheufen, S.; Stolle, I.; Günther, S.; et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J. Antimicrob. Chemother. 2014, 69, 2676–2680. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef]
- Waade, J.; Seibt, U.; Honscha, W.; Rachidi, F.; Starke, A.; Speck, S.; Truyen, U. Multidrug-resistant enterobacteria in newborn dairy calves in Germany. PLoS ONE 2021, 16, e0248291. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; Linde, J.; Hammer, P.; Pletz, M.W.; Neubauer, H.; Sprague, L.D. WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome, and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany. Microorganisms 2022, 10, 564. [Google Scholar] [CrossRef]
- Khater, D.F.; Lela, R.A.; El-Diasty, M.; Moustafa, S.A.; Wareth, G. Detection of harmful foodborne pathogens in food samples at the points of sale by MALDT-TOF MS in Egypt. BMC Res. Notes 2021, 14, 112. [Google Scholar] [CrossRef]
- Linde, J.; Homeier-Bachmann, T.; Dangel, A.; Riehm, J.M.; Sundell, D.; Öhrman, C.; Forsman, M.; Tomaso, H. Genotyping of Francisella tularensis subsp. holarctica from Hares in Germany. Microorganisms 2020, 8, 1932. [Google Scholar] [CrossRef]
- Wareth, G.; Linde, J.; Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam. Int. J. Antimicrob. Agents 2020, 56, 106127. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website, and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.D.; Brisse, S. Multilocus Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; Abudahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef]
- Brisse, S.; Passet, V.; Grimont, P.A.D. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int. J. Syst. Evol. Microbiol. 2014, 64, 3146–3152. [Google Scholar] [CrossRef]
- Xanthopoulou, K.; Imirzalioglu, C.; Walker, S.V.; Behnke, M.; Dinkelacker, A.G.; Eisenbeis, S.; Gastmeier, P.; Gölz, H.; Käding, N.; Kern, W.V.; et al. Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany. Antibiotics 2022, 11, 1286. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.; Fuchs, S.; Pfeifer, Y.; Semmler, T.; Eckmanns, T.; Korr, G.; Sissolak, D.; Friedrichs, M.; Zill, E.; Tung, M.-L.; et al. Whole Genome Sequence Analysis of CTX-M-15 Producing Klebsiella Isolates Allowed Dissecting a Polyclonal Outbreak Scenario. Front. Microbiol. 2018, 9, 322. [Google Scholar] [CrossRef]
- Klaper, K.; Hammerl, J.A.; Rau, J.; Pfeifer, Y.; Werner, G. Genome-Based Analysis of Klebsiella spp. Isolates from Animals and Food Products in Germany, 2013–2017. Pathogens 2021, 10, 573. [Google Scholar] [CrossRef]
- Maatallah, M.; Vading, M.; Kabir, M.H.; Bakhrouf, A.; Kalin, M.; Nauclér, P.; Brisse, S.; Giske, C.G. Klebsiella variicola is a frequent cause of bloodstream infection in the stockholm area and associated with higher mortality compared to K. pneumoniae. PLoS ONE 2014, 9, e113539. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Tacão, M.; Henriques, I. Hidden threats in the plastisphere: Carbapenemase-producing Enterobacterales colonizing microplastics in river water. Sci. Total Environ. 2024, 922, 171268. [Google Scholar] [CrossRef]
- Formenti, N.; Guarneri, F.; Bertasio, C.; Parisio, G.; Romeo, C.; Scali, F.; Birbes, L.; Boniotti, M.B.; Diegoli, G.; Candela, L.; et al. Wastewater-based surveillance in Italy leading to the first detection of mcr-10-positive Klebsiella quasipneumoniae. Antimicrob. Resist. Infect. Control 2022, 11, 155. [Google Scholar] [CrossRef]
- Wahl, A.; Fischer, M.A.; Klaper, K.; Müller, A.; Borgmann, S.; Friesen, J.; Hunfeld, K.-P.; Ilmberger, A.; Kolbe-Busch, S.; Kresken, M.; et al. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int. J. Med. Microbiol. 2024, 314, 151601. [Google Scholar] [CrossRef]
- Mshana, S.E.; Fritzenwanker, M.; Falgenhauer, L.; Domann, E.; Hain, T.; Chakraborty, T.; Imirzalioglu, C. Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla(CTX-M-15) at a German University-Hospital. BMC Microbiol. 2015, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Boutin, S.; Welker, S.; Gerigk, M.; Miethke, T.; Heeg, K.; Nurjadi, D. Molecular surveillance of carbapenem-resistant Enterobacterales in two nearby tertiary hospitals to identify regional spread of high-risk clones in Germany, 2019–2020. J. Hosp. Infect. 2024, 149, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Kaase, M.; Schimanski, S.; Schiller, R.; Beyreiß, B.; Thürmer, A.; Steinmann, J.; Kempf, V.A.; Hess, C.; Sobottka, I.; Fenner, I.; et al. Multicentre investigation of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in German hospitals. Int. J. Med. Microbiol. 2016, 306, 415–420. [Google Scholar] [CrossRef] [PubMed]
Host | Sample Origin | Number of Isolates | MLST |
---|---|---|---|
Dogs (n = 42) | Feces | 27 | 1537 *, 200 *, 37 **, 101, 29, 1999, 7120, 2349, 3155, 46, 1164, 4435, 45, 2648, 3096, 323, 1779, 3594 #, 2217, 2286, 26, 20, 252 |
Urine | 2 | 4069, 1758 | |
Tracheal swab | 3 | 2310, 140, 237 | |
Wound | 2 | 353, 391 | |
Nose | 1 | 48 | |
Skin | 1 | 37 | |
Eye | 1 | 147 | |
Vocal cords | 1 | 6123 | |
Abdominal abscess | 1 | 4913 | |
Intestine | 1 | 29 | |
Uterus | 1 | 20 | |
ND | 1 | 901 | |
Horses (n = 6) | Nose | 2 | 3827, 661 |
Wound | 1 | 60 | |
Cervix | 1 | 427 | |
Penis | 1 | 298 | |
Uterus | 1 | 5754 | |
Cats (n = 3) | Feces | 2 | 309, 589 |
Ear | 1 | 584 | |
Cattle (n = 1) | Nose | 1 | 1609 |
Chicken (n = 1) | Feces | 1 | 1902 |
ST | MLST Profile | Klebsiella Species | Sample Origin | Source | Geographical Origin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
gapA | infB | mdh | pgi | phoE | rpoB | tonB | |||||
7681 | 4 | 1 | 2 | 1 | 1 | 4 | 61 | K. pneumoniae | Feces | Horse | North Rhine-Westphalia |
7682 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | K. pneumoniae | Uterus | Horse | Baden-Wuerttemberg |
7683 | 2 | 1 | 37 | 1 | 9 | 1 | 31 | K. pneumoniae | Cervix | Horse | North Rhine-Westphalia |
7684 | 18 | 22 | 327 | 223 | 11 | 105 | 99 | K. quasipneumoniae | Feces | Dog | Hesse |
7685 | 17 | 55 | 73 | 20 | 103 | 18 | 608 | K. quasipneumoniae | Feces | Dog | Hesse |
7686 | 18 | 22 | 55 | 22 | 193 | 54 | 50 | K. quasipneumoniae | Feces | Dog | Lower Saxony |
7687 | 2 | 1 | 2 | 2 | 7 | 4 | 23 | K. pneumoniae | Urine | Dog | North Rhine-Westphalia |
7688 | 17 | 80 | 92 | 306 | 100 | 18 | 162 | K. quasipneumoniae | Urine | Dog | Mecklenburg-West Pomerania |
7689 | 15 | 6 | 2 | 26 | 10 | 279 | 4 | K. pneumoniae | Feces | Horse | North Rhine-Westphalia |
7697 | 2 | 5 | 1 | 1 | 9 | 1 | 501 | K. pneumoniae | Feces | Dog | Bavaria |
7698 | 3 | 5 | 2 | 1 | 16 | 1 | 363 | K. pneumoniae | Uterus | Horse | Saxony |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassiouny, M.; Kopp, P.A.; Stamm, I.; Brangsch, H.; Neubauer, H.; Sprague, L.D. Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types. Pathogens 2025, 14, 259. https://doi.org/10.3390/pathogens14030259
Bassiouny M, Kopp PA, Stamm I, Brangsch H, Neubauer H, Sprague LD. Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types. Pathogens. 2025; 14(3):259. https://doi.org/10.3390/pathogens14030259
Chicago/Turabian StyleBassiouny, Marwa, Peter A. Kopp, Ivonne Stamm, Hanka Brangsch, Heinrich Neubauer, and Lisa D. Sprague. 2025. "Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types" Pathogens 14, no. 3: 259. https://doi.org/10.3390/pathogens14030259
APA StyleBassiouny, M., Kopp, P. A., Stamm, I., Brangsch, H., Neubauer, H., & Sprague, L. D. (2025). Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types. Pathogens, 14(3), 259. https://doi.org/10.3390/pathogens14030259