Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations
Abstract
1. Introduction
2. Materials and Methods
3. COPD Exacerbations and Current Treatment Results
3.1. Therapeutic Approaches
3.1.1. Antimicrobials
Antibiotics
3.1.2. Mucoregulators
N-acetylcysteine
3.1.3. Bronchodilators
Beta-2 Agonists
Muscarinic Antagonists
Methylxanthines
Future of Bronchodilators in COPD Exacerbations
3.1.4. Anti-Inflammatories
Corticosteroids
Corticosteroids in COPD Patients with or without COVID-19
3.1.5. Long-Term Oxygen Therapy and Beta-Blocker Therapy in COPD Exacerbations
3.1.6. Vitamin D
3.1.7. Personalized Medicine, Epigenetics and COPD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Offenbacher, S.; Beck, J.D.; Barros, S.P.; Suruki, R.Y.; Loewy, Z.G. Obstructive airway disease and edentulism in the Atherosclerosis Risk in Communities (ARIC) study. BMJ Open 2012, 2, e001615. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.P.; Suruki, R.; Loewy, Z.G.; Beck, J.D.; Offenbacher, S. A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: Modulatory role of systemic biomarkers of inflammation. PLoS ONE 2013, 8, e68592. [Google Scholar] [CrossRef]
- Pragman, A.A.; Berger, J.P.; Williams, B.J. Understanding Persistent Bacterial Lung Infections: Clinical Implications Informed by the Biology of the Microbiota and Biofilms. Clin. Pulm. Med. 2016, 23, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Berger, D.; Rakhamimiova, A.; Pollack, A.; Loewy, Z. Oral Biofilms: Development, Control and Analysis. High-Throughput 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Diagnosis, Management and Prevention of COPD; 2022 Report; GOLD: Fontana, WI, USA, 2022; Available online: https://goldcopd.org/2022-gold-reports-2/ (accessed on 14 November 2022).
- Papi, A.; Bellettato, C.M.; Braccioni, F.; Romagnoli, M.; Casolari, P.; Caramori, G.; Fabbri, L.M.; Johnston, S.L. Infections and Airway Inflammation in Chronic Obstructive Pulmonary Disease Severe Exacerbations. Am. J. Respir. Crit Care Med. 2006, 173, 1114–1121. [Google Scholar] [CrossRef]
- Ram, F.S.; Rodriguez-Roisin, R.; Granados-Navarrete, A.; Garcia-Aymerich, J.; Barnes, N.C. Antibiotics for Exacerbations of Chronic Obstructive Pulmonary Disease. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. CD004403.pub2. [Google Scholar]
- Sethi, S.; Murphy, T.F. Bacterial Infection in Chronic Obstructive Pulmonary Disease in 2000: A State-of-the-Art Review. Clin. Microbiol. Rev. 2001, 14, 336–363. [Google Scholar] [CrossRef]
- Schroeder, T.; Kruse, J.M.; Marcy, F.; Piper, S.K.; Storm, C.; Nee, J. Is the Routine Use of Antipseudomonal Antibiotics in Acutely Exacerbated COPD Patients Indicated: A Retrospective Analysis in 437 ICU Patients. J. Crit. Care 2021, 65, 49–55. [Google Scholar] [CrossRef]
- Sethi, S.; Murphy, T.F. Acute Exacerbations of Chronic Bronchitis: New Developments Concerning Microbiology and Pathophysiology—Impact on Approaches to Risk Stratification and Therapy. Infect. Dis. Clin. N. Am. 2004, 18, 861–882. [Google Scholar] [CrossRef]
- El Moussaoui, R.; Roede, B.M.; Speelman, P.; Bresser, P.; Prins, J.M.; Bossuyt, P.M.M. Short-Course Antibiotic Treatment in Acute Exacerbations of Chronic Bronchitis and COPD: A Meta-Analysis of Double-Blind Studies. Thorax 2008, 63, 415–422. [Google Scholar] [CrossRef]
- Wilson, R.; Schentag, J.J.; Ball, P.; Mandell, L. A Comparison of Gemifloxacin and Clarithromycin in Acute Exacerbations of Chronic Bronchitis and Long-Term Clinical Outcomes. Clin. Ther. 2002, 24, 639–652. [Google Scholar] [CrossRef]
- Wilson, R.; Allegra, L.; Huchon, G.; Izquierdo, J.-L.; Jones, P.; Schaberg, T.; Sagnier, P.-P. MOSAIC Study Group Short-Term and Long-Term Outcomes of Moxifloxacin Compared to Standard Antibiotic Treatment in Acute Exacerbations of Chronic Bronchitis. Chest 2004, 125, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, A.; Sethi, S. Optimizing Antibiotic Selection in Treating COPD Exacerbations. Int. J. Chron. Obs. Pulmon. Dis. 2008, 3, 31–44. [Google Scholar] [CrossRef]
- Joyner, K.R.; Walkerly, A.; Seidel, K.; Walsh, N.; Damshekan, N.; Perry, T.; Soric, M.M. Comparison of Narrow-Versus Broad-Spectrum Antibiotics in Elderly Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease. J. Pharm. Pract. 2022, 35, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Baalbaki, N.; Giuliano, C.; Hartner, C.L.; Kale-Pradhan, P.; Johnson, L. Azithromycin Versus Beta-Lactams in Hospitalized Patients with Acute Exacerbations of COPD. J. Gen. Intern Med. 2022. [CrossRef] [PubMed]
- Smith, H.J. Dual Activity of Fluoroquinolones against Streptococcus Pneumoniae: The Facts behind the Claims. J. Antimicrob. Chemother. 2002, 49, 893–895. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A Critical Review of the Fluoroquinolones: Focus on Respiratory Infections. Drugs 2002, 62, 13–59. [Google Scholar] [CrossRef] [PubMed]
- Brueggemann, A.B.; Coffman, S.L.; Rhomberg, P.; Huynh, H.; Almer, L.; Nilius, A.; Flamm, R.; Doern, G.V. Fluoroquinolone Resistance in Streptococcus Pneumoniae in United States since 1994–1995. Antimicrob. Agents Chemother. 2002, 46, 680–688. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jorgensen, J.H.; Weigel, L.M.; Swenson, J.M.; Whitney, C.G.; Ferraro, M.J.; Tenover, F.C. Activities of Clinafloxacin, Gatifloxacin, Gemifloxacin, and Trovafloxacin against Recent Clinical Isolates of Levofloxacin-Resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2000, 44, 2962–2968. [Google Scholar] [CrossRef]
- Saravolatz, L.D.; Leggett, J. Gatifloxacin, Gemifloxacin, and Moxifloxacin: The Role of 3 Newer Fluoroquinolones. Clin. Infect. Dis. 2003, 37, 1210–1215. [Google Scholar] [CrossRef]
- Wilson, R.; Macklin-Doherty, A. The Use of Moxifloxacin for Acute Exacerbations of Chronic Obstructive Pulmonary Disease and Chronic Bronchitis. Expert Rev. Respir. Med. 2012, 6, 481–492. [Google Scholar] [CrossRef]
- Ruiz-González, A.; Sáez-Huerta, E.; Martínez-Alonso, M.; Bernet-Sánchez, A.; Porcel, J.M. A Simple Scoring System to Differentiate Bacterial from Viral Infections in Acute Exacerbations of COPD Requiring Hospitalization. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Choi, S.-H.; Huh, J.-W.; Sung, H.; Hong, S.B.; Lim, C.-M.; Koh, Y. Different Pattern of Viral Infections and Clinical Outcomes in Patient with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Chronic Obstructive Pulmonary Disease with Pneumonia: Respiratory Viral Infections in COPD Patients. J. Med. Virol. 2016, 88, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Vanspauwen, M.J.; Franssen, F.M.E.; Raoult, D.; Wouters, E.F.M.; Bruggeman, C.A.; Linssen, C.F.M. Infections with Mimivirus in Patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2012, 106, 1690–1694. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Perotin, J.-M.; Dury, S.; Renois, F.; Deslee, G.; Wolak, A.; Duval, V.; De Champs, C.; Lebargy, F.; Andreoletti, L. Detection of Multiple Viral and Bacterial Infections in Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Pilot Prospective Study. J. Med. Virol. 2013, 85, 866–873. [Google Scholar] [CrossRef]
- Chen, C.Y.J.; Yew, M.S.; Abisheganaden, J.A.; Xu, H. Predictors of Influenza PCR Positivity in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 25–32. [Google Scholar] [CrossRef]
- Biancardi, E.; Fennell, M.; Rawlinson, W.; Thomas, P.S. Viruses Are Frequently Present as the Infecting Agent in Acute Exacerbations of Chronic Obstructive Pulmonary Disease in Patients Presenting to Hospital: Respiratory Viruses in AECOPD. Intern Med. J. 2016, 46, 1160–1165. [Google Scholar] [CrossRef]
- Kan-o, K.; Washio, Y.; Fujimoto, T.; Shiroyama, N.; Nakano, T.; Wakamatsu, K.; Takata, S.; Yoshida, M.; Fujita, M.; Matsumoto, K. Differences in the Spectrum of Respiratory Viruses and Detection of Human Rhinovirus C in Exacerbations of Adult Asthma and Chronic Obstructive Pulmonary Disease. Respir. Investig. 2022, 60, 129–136. [Google Scholar] [CrossRef]
- Yormaz, B.; Findik, D.; Süerdem, M. Differences of Viral Panel Positive versus Negative by Real-Time PCR in COPD Exacerbated Patients. Tuberk Toraks 2019, 67, 124–130. [Google Scholar] [CrossRef]
- Koul, P.; Mir, H.; Akram, S.; Potdar, V.; Chadha, M. Respiratory Viruses in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Lung India 2017, 34, 29. [Google Scholar] [CrossRef] [PubMed]
- McManus, T.E.; Marley, A.-M.; Baxter, N.; Christie, S.N.; O’Neill, H.J.; Elborn, J.S.; Coyle, P.V.; Kidney, J.C. Respiratory Viral Infection in Exacerbations of COPD. Respir. Med. 2008, 102, 1575–1580. [Google Scholar] [CrossRef]
- Yin, T.; Zhu, Z.; Mei, Z.; Feng, J.; Zhang, W.; He, Y.; Shi, J.; Qian, L.; Liu, Y.; Huang, Q.; et al. Analysis of Viral Infection and Biomarkers in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Clin. Respir. J. 2018, 12, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, A.L.; van Boheemen, S.; Sidorov, I.; Carbo, E.C.; Pappas, N.; Mei, H.; Feltkamp, M.; Aanerud, M.; Bakke, P.; Claas, E.C.J.; et al. The Respiratory Virome and Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. PLoS ONE 2019, 14, e0223952. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A.; Ginde, A.A.; Clark, S.; Cartwright, C.P.; Falsey, A.R.; Niewoehner, D.E. Viral Pathogens in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Intern Emerg. Med. 2008, 3, 355. [Google Scholar] [CrossRef] [PubMed]
- Beckham, J.D.; Cadena, A.; Lin, J.; Piedra, P.A.; Glezen, W.P.; Greenberg, S.B.; Atmar, R.L. Respiratory Viral Infections in Patients with Chronic, Obstructive Pulmonary Disease. J. Infect. 2005, 50, 322–330. [Google Scholar] [CrossRef]
- Ko, F.W.S.; Ip, M.; Chan, P.K.S.; Chan, M.C.H.; To, K.-W.; Ng, S.S.S.; Chau, S.S.L.; Tang, J.W.; Hui, D.S.C. Viral Etiology of Acute Exacerbations of COPD in Hong Kong. Chest 2007, 132, 900–908. [Google Scholar] [CrossRef]
- de Jong, Y.P.; Uil, S.M.; Grotjohan, H.P.; Postma, D.S.; Kerstjens, H.A.M.; van den Berg, J.W.K. Oral or IV Prednisolone in the Treatment of COPD Exacerbations. Chest 2007, 132, 1741–1747. [Google Scholar] [CrossRef]
- MacLeod, M.; Papi, A.; Contoli, M.; Beghé, B.; Celli, B.R.; Wedzicha, J.A.; Fabbri, L.M. Chronic Obstructive Pulmonary Disease Exacerbation Fundamentals: Diagnosis, Treatment, Prevention and Disease Impact. Respirology 2021, 26, 532–551. [Google Scholar] [CrossRef]
- Lamb, Y.N. Nirmatrelvir Plus Ritonavir: First Approval. Drugs 2022, 82, 585–591. [Google Scholar] [CrossRef]
- Jiang, C.; Zou, J.; Lv, Q.; Yang, Y. Systematic Review and Meta-Analysis of the Efficacy of N-Acetylcysteine in the Treatment of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Ann. Palliat. Med. 2021, 10, 6564–6576. [Google Scholar] [CrossRef]
- Hsu, E.; Bajaj, T. Beta 2 Agonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Naji, A.; Gatling, J.W. Muscarinic Antagonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cates, C.J.; Welsh, E.J.; Rowe, B.H. Holding Chambers (Spacers) versus Nebulisers for Beta-Agonist Treatment of Acute Asthma. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Dolovich, M.B.; Ahrens, R.C.; Hess, D.R.; Anderson, P.; Dhand, R.; Rau, J.L.; Smaldone, G.C.; Guyatt, G. Device Selection and Outcomes of Aerosol Therapy: Evidence-Based Guidelines. Chest 2005, 127, 335–371. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.O. Bronchodilator Delivery in Acute Airflow Obstruction: A Meta-Analysis. Arch. Intern Med. 1997, 157, 1736. [Google Scholar] [CrossRef] [PubMed]
- Ko, F.W.; Chan, K.P.; Hui, D.S.; Goddard, J.R.; Shaw, J.G.; Reid, D.W.; Yang, I.A. Acute Exacerbation of COPD: Hot Topics on Acute Exacerbation of COPD. Respirology 2016, 21, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Simonds, A.; Hanak, A.; Chatwin, M.; Morrell, M.; Hall, A.; Parker, K.; Siggers, J.; Dickinson, R. Evaluation of Droplet Dispersion during Non-Invasive Ventilation, Oxygen Therapy, Nebuliser Treatment and Chest Physiotherapy in Clinical Practice: Implications for Management of Pandemic Influenza and Other Airborne Infections. Health Technol Assess 2010, 14. [Google Scholar] [CrossRef] [PubMed]
- Kunadharaju, R.; Sethi, S. Treatment of Acute Exacerbations in Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2020, 41, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Rowe, B.H.; Camargo, C.A. Methylxanthines for Exacerbations of Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2003, 2010. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.J.; Alves, C.; Furtado, S.; Ferreira, J.; Drummond, M.; Robalo-Cordeiro, C. COPD Exacerbations: Management and Hospital Discharge. Pulmonology 2018, 24, 345–350. [Google Scholar] [CrossRef] [PubMed]
- National Clinical Guideline Centre (UK). Chronic Obstructive Pulmonary Disease: Management of Chronic Obstructive Pulmonary Disease in Adults in Primary and Secondary Care; National Institute for Health and Clinical Excellence: Guidance; Royal College of Physicians (UK): London, UK, 2010. [Google Scholar]
- Cazzola, M.; Rogliani, P.; Matera, M.G. The Future of Bronchodilation: Looking for New Classes of Bronchodilators. Eur. Respir. Rev. 2019, 28. [Google Scholar] [CrossRef]
- Mak, G.; Hanania, N.A. New Bronchodilators. Curr. Opin. Pharmacol. 2012, 12, 238–245. [Google Scholar] [CrossRef]
- Beute, J.; Lukkes, M.; Koekoek, E.P.; Nastiti, H.; Ganesh, K.; de Bruijn, M.J.W.; Hockman, S.; van Nimwegen, M.; Braunstahl, G.-J.; Boon, L.; et al. A Pathophysiological Role of PDE3 in Allergic Airway Inflammation. JCI Insight 2018, 3, e94888. [Google Scholar] [CrossRef]
- Franciosi, L.G.; Diamant, Z.; Banner, K.H.; Zuiker, R.; Morelli, N.; Kamerling, I.M.C.; de Kam, M.L.; Burggraaf, J.; Cohen, A.F.; Cazzola, M.; et al. Efficacy and Safety of RPL554, a Dual PDE3 and PDE4 Inhibitor, in Healthy Volunteers and in Patients with Asthma or Chronic Obstructive Pulmonary Disease: Findings from Four Clinical Trials. Lancet Respir. Med. 2013, 1, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.; D’Anjou, H.; Higgins, M.-È.; Gougeon, J.; Aubé, P.; Moktefi, K.; Mouissi, S.; Séguin, S.; Séguin, R.; Renzi, P.M.; et al. A Multi-Target Antisense Approach against PDE4 and PDE7 Reduces Smoke-Induced Lung Inflammation in Mice. Respir. Res. 2009, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Banner, K.H.; Press, N.J. Dual PDE3/4 Inhibitors as Therapeutic Agents for Chronic Obstructive Pulmonary Disease. Br. J. Pharmacol. 2009, 157, 892–906. [Google Scholar] [CrossRef] [PubMed]
- Janjua, S.; Fortescue, R.; Poole, P. Phosphodiesterase-4 Inhibitors for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2020, 2020. [Google Scholar] [CrossRef]
- Kim, D.; Cho, S.; Castaño, M.A.; Panettieri, R.A.; Woo, J.A.; Liggett, S.B. Biased TAS2R Bronchodilators Inhibit Airway Smooth Muscle Growth by Downregulating Phosphorylated Extracellular Signal–Regulated Kinase 1/2. Am. J. Respir. Cell Mol. Biol. 2019, 60, 532–540. [Google Scholar] [CrossRef]
- Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter Taste Receptors on Airway Smooth Muscle Bronchodilate by Localized Calcium Signaling and Reverse Obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef]
- Lebender, L.F.; Prünte, L.; Rumzhum, N.N.; Ammit, A.J. Selectively Targeting Prostanoid E (EP) Receptor-Mediated Cell Signalling Pathways: Implications for Lung Health and Disease. Pulm. Pharmacol. Ther. 2018, 49, 75–87. [Google Scholar] [CrossRef]
- Buckley, J.; Birrell, M.A.; Maher, S.A.; Nials, A.T.; Clarke, D.L.; Belvisi, M.G. EP4 Receptor as a New Target for Bronchodilator Therapy. Thorax 2011, 66, 1029–1035. [Google Scholar] [CrossRef]
- Joshi, R.; Hamed, O.; Yan, D.; Michi, A.N.; Mostafa, M.M.; Wiehler, S.; Newton, R.; Giembycz, M.A. Prostanoid Receptors of the EP4 -Subtype Mediate Gene Expression Changes in Human Airway Epithelial Cells with Potential Anti-Inflammatory Activity. J. Pharmacol. Exp. Ther. 2021, 376, 161–180. [Google Scholar] [CrossRef]
- Chiba, Y.; Misawa, M. The Role of RhoA-Mediated Ca2+ Sensitization of Bronchial Smooth Muscle Contraction in Airway Hyperresponsiveness. J. Smooth Muscle Res. 2004, 40, 155–167. [Google Scholar] [CrossRef]
- Fernandes, L.B.; Henry, P.J.; Goldie, R.G. Review: Rho Kinase as a Therapeutic Target in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Ther. Adv. Respir. Dis. 2007, 1, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; LoGrasso, P.V.; Defert, O.; Li, R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 2016, 59, 2269–2300. [Google Scholar] [CrossRef] [PubMed]
- Defert, O.; Boland, S. Rho Kinase Inhibitors: A Patent Review (2014–2016). Expert Opin. Ther. Pat. 2017, 27, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Yarova, P.L.; Stewart, A.L.; Sathish, V.; Britt, R.D.; Thompson, M.A.; P. Lowe, A.P.; Freeman, M.; Aravamudan, B.; Kita, H.; Brennan, S.C.; et al. Calcium-Sensing Receptor Antagonists Abrogate Airway Hyperresponsiveness and Inflammation in Allergic Asthma. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Banno, A.; Reddy, A.T.; P. Lakshmi, S.; Reddy, R.C. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma. Nucl. Recept. Res. 2018, 5, 101306. [Google Scholar] [CrossRef]
- Fogli, S.; Pellegrini, S.; Adinolfi, B.; Mariotti, V.; Melissari, E.; Betti, L.; Fabbrini, L.; Giannaccini, G.; Lucacchini, A.; Bardelli, C.; et al. Rosiglitazone Reverses Salbutamol-Induced Β2-Adrenoceptor Tolerance in Airway Smooth Muscle: Rosiglitazone and Β2-Adrenoceptor Responsiveness. Br. J. Pharmacol. 2011, 162, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Donovan, C.; Bailey, S.R.; Tran, J.; Haitsma, G.; Ibrahim, Z.A.; Foster, S.R.; Tang, M.L.K.; Royce, S.G.; Bourke, J.E. Rosiglitazone Elicits in Vitro Relaxation in Airways and Precision Cut Lung Slices from a Mouse Model of Chronic Allergic Airways Disease. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 309, L1219–L1228. [Google Scholar] [CrossRef]
- Lam, M.; Royce, S.G.; Samuel, C.S.; Bourke, J.E. Serelaxin as a Novel Therapeutic Opposing Fibrosis and Contraction in Lung Diseases. Pharmacol. Ther. 2018, 187, 61–70. [Google Scholar] [CrossRef]
- Lam, M.; Royce, S.G.; Donovan, C.; Jelinic, M.; Parry, L.J.; Samuel, C.S.; Bourke, J.E. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef]
- Pini, A.; Boccalini, G.; Lucarini, L.; Catarinicchia, S.; Guasti, D.; Masini, E.; Bani, D.; Nistri, S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). J. Pharmacol. Exp. Ther. 2016, 357, 451–458. [Google Scholar] [CrossRef]
- Muppidi, A.; Lee, S.J.; Hsu, C.-H.; Zou, H.; Lee, C.; Pflimlin, E.; Mahankali, M.; Yang, P.; Chao, E.; Ahmad, I.; et al. Design and Synthesis of Potent, Long-Acting Lipidated Relaxin-2 Analogs. Bioconjugate Chem. 2019, 30, 83–89. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.; Hoy, A.M.; Bamford, M.J.; Mossakowska, D.E.; Ruediger, M.P.; Griggs, J.; Desai, S.; Simpson, K.; Caballero-Hernandez, I.; Iredale, J.P.; et al. In Search of a Small Molecule Agonist of the Relaxin Receptor RXFP1 for the Treatment of Liver Fibrosis. Sci. Rep. 2017, 7, 10806. [Google Scholar] [CrossRef]
- Dupont, L.L.; Glynos, C.; Bracke, K.R.; Brouckaert, P.; Brusselle, G.G. Role of the Nitric Oxide–Soluble Guanylyl Cyclase Pathway in Obstructive Airway Diseases. Pulm. Pharmacol. Ther. 2014, 29, 1–6. [Google Scholar] [CrossRef]
- Paul, T.; Salazar-Degracia, A.; Peinado, V.I.; Tura-Ceide, O.; Blanco, I.; Barreiro, E.; Barberà, J.A. Soluble Guanylate Cyclase Stimulation Reduces Oxidative Stress in Experimental Chronic Obstructive Pulmonary Disease. PLoS ONE 2018, 13, e0190628. [Google Scholar] [CrossRef]
- Panettieri, R.A.; Pera, T.; Liggett, S.B.; Benovic, J.L.; Penn, R.B. Pepducins as a Potential Treatment Strategy for Asthma and COPD. Curr. Opin. Pharmacol. 2018, 40, 120–125. [Google Scholar] [CrossRef]
- Carr, R.; Koziol-White, C.; Zhang, J.; Lam, H.; An, S.S.; Tall, G.G.; Panettieri, R.A.; Benovic, J.L. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol. Pharmacol. 2016, 89, 94–104. [Google Scholar] [CrossRef]
- Woods, J.A.; Wheeler, J.; Finch, C.; Pinner, N. Corticosteroids in the Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2014, 421. [Google Scholar] [CrossRef]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-Term Systemic Corticosteroid Exposure: A Systematic Literature Review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef]
- Leuppi, J.D.; Schuetz, P.; Bingisser, R.; Bodmer, M.; Briel, M.; Drescher, T.; Duerring, U.; Henzen, C.; Leibbrandt, Y.; Maier, S.; et al. Short-Term vs Conventional Glucocorticoid Therapy in Acute Exacerbations of Chronic Obstructive Pulmonary Disease: The REDUCE Randomized Clinical Trial. JAMA 2013, 309, 2223. [Google Scholar] [CrossRef]
- Walters, J.A.; Tan, D.J.; White, C.J.; Wood-Baker, R. Different Durations of Corticosteroid Therapy for Exacerbations of Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Li, L.; Zhao, N.; Ma, X.; Sun, F.; He, B.; Qin, Z.; Wu, K.; Wang, X.; Zhao, Q.; Zhang, S.; et al. Personalized Variable vs Fixed-Dose Systemic Corticosteroid Therapy in Hospitalized Patients with Acute Exacerbations of COPD. Chest 2021, 160, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Finch, D.; Pavord, I.; Jones, P.; Burgel, P.R.; Rabe, K.F. Exacerbations of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Abroug, F.; Krishnan, J.A. What Is the Right Dose of Systemic Corticosteroids for Intensive Care Unit Patients with Chronic Obstructive Pulmonary Disease Exacerbations? A Question in Search of a Definitive Answer. Am. J. Respir. Crit Care Med. 2014, 189, 1014–1016. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Reid, C.; Haldar, P.; McCormick, M.; Haldar, K.; Kebadze, T.; Duvoix, A.; et al. Acute Exacerbations of Chronic Obstructive Pulmonary Disease: Identification of Biologic Clusters and Their Biomarkers. Am. J. Respir. Crit Care Med. 2011, 184, 662–671. [Google Scholar] [CrossRef]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Pancholi, M.; Venge, P.; Lomas, D.A.; Barer, M.R.; Johnston, S.L.; Pavord, I.D.; et al. Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease: A Randomized Placebo-Controlled Trial. Am. J. Respir. Crit Care Med. 2012, 186, 48–55. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; WHO/2019-nCoV/clinical/2020.4; World Health Organization: Geneva, Switzerland, 2020. Available online: https://apps.who.int/iris/handle/10665/331446 (accessed on 28 November 2022).
- Hasan, S.S.; Capstick, T.; Zaidi, S.T.R.; Kow, C.S.; Merchant, H.A. Use of Corticosteroids in Asthma and COPD Patients with or without COVID-19. Respir. Med. 2020, 170, 106045. [Google Scholar] [CrossRef]
- Johns, M.; George, S.; Taburyanskaya, M.; Poon, Y.K. A Review of the Evidence for Corticosteroids in COVID-19. J. Pharm. Pract. 2022, 35, 626–637. [Google Scholar] [CrossRef]
- Kew, K.M.; Seniukovich, A. Inhaled Steroids and Risk of Pneumonia for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2014, 2014. [Google Scholar] [CrossRef]
- Rentsch, C.T.; Kidwai-Khan, F.; Tate, J.P.; Park, L.S.; King, J.T.; Skanderson, M.; Hauser, R.G.; Schultze, A.; Jarvis, C.I.; Holodniy, M.; et al. Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States Veterans Aged 54-75 Years. medRxiv 2020. [Google Scholar] [CrossRef]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk Factors for SARS-CoV-2 among Patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre Primary Care Network: A Cross-Sectional Study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.C.; Tan, P.S.; Clift, A.K.; Harrison, D.; et al. Association between Pre-Existing Respiratory Disease and Its Treatment, and Severe COVID-19: A Population Cohort Study. Lancet Respir. Med. 2021, 9, 909–923. [Google Scholar] [CrossRef]
- Choi, J.C.; Jung, S.-Y.; Yoon, U.A.; You, S.-H.; Kim, M.-S.; Baek, M.S.; Jung, J.-W.; Kim, W.-Y. Inhaled Corticosteroids and COVID-19 Risk and Mortality: A Nationwide Cohort Study. J. Clin. Med. 2020, 9, 3406. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Criner, G.J.; Papi, A.; Singh, D.; Anzueto, A.; Martinez, F.J.; Agusti, A.A. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit Care Med. 2021, 203, 24–36. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Community-Based Care of Patients with Chronic Obstructive Pulmonary Disease (COPD); National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (NICE): London, UK, 2020.
- Sen, P.; Majumdar, U.; Zein, J.; Hatipoğlu, U.; Attaway, A.H. Inhaled Corticosteroids Do Not Adversely Impact Outcomes in COVID-19 Positive Patients with COPD: An Analysis of Cleveland Clinic’s COVID-19 Registry. PLoS ONE 2021, 16, e0252576. [Google Scholar] [CrossRef]
- Furci, F.; Caminati, M.; Senna, G.; Gangemi, S. The Potential Protective Role of Corticosteroid Therapy in Patients with Asthma and COPD against COVID-19. Clin. Mol. Allergy 2021, 19, 19. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Singh, D.; Hadfield, R.M. Inhaled Corticosteroids and COVID-19: A Systematic Review and Clinical Perspective. Eur. Respir. J. 2020, 55, 2001009. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Griesel, M.; Wagner, C.; Mikolajewska, A.; Stegemann, M.; Fichtner, F.; Metzendorf, M.-I.; Nair, A.A.; Daniel, J.; Fischer, A.-L.; Skoetz, N. Inhaled Corticosteroids for the Treatment of COVID-19. Cochrane Database Syst. Rev. 2022, 2022. [Google Scholar] [CrossRef]
- McNicholas, W.; Kent; Mitchell. Hypoxemia in Patients with COPD: Cause, Effects, and Disease Progression. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 199. [Google Scholar] [CrossRef]
- Weekley, M.S.; Bland, L.E. Oxygen Administration. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Austin, M.A.; Wills, K.E.; Blizzard, L.; Walters, E.H.; Wood-Baker, R. Effect of High Flow Oxygen on Mortality in Chronic Obstructive Pulmonary Disease Patients in Prehospital Setting: Randomised Controlled Trial. BMJ 2010, 341, c5462. [Google Scholar] [CrossRef]
- Aubier, M.; Murciano, D.; Milic-Emili, J.; Touaty, E.; Daghfous, J.; Pariente, R.; Derenne, J.P. Effects of the Administration of O2 on Ventilation and Blood Gases in Patients with Chronic Obstructive Pulmonary Disease During Acute Respiratory Failure. Am. Rev. Respir. Dis. 1980, 122, 747–754. [Google Scholar] [CrossRef]
- Echevarria, C.; Steer, J.; Wason, J.; Bourke, S. Oxygen Therapy and Inpatient Mortality in COPD Exacerbation. Emerg. Med. J. 2021, 38, 170–177. [Google Scholar] [CrossRef]
- Celli, B.R.; MacNee, W.; Agusti, A.; Anzueto, A.; Berg, B.; Buist, A.S.; Calverley, P.M.A.; Chavannes, N.; Dillard, T.; Fahy, B.; et al. Standards for the Diagnosis and Treatment of Patients with COPD: A Summary of the ATS/ERS Position Paper. Eur. Respir. J. 2004, 23, 932–946. [Google Scholar] [CrossRef]
- UpToDate. Available online: https://www.uptodate.com/contents/long-term-supplemental-oxygen-therapy#H3194179371 (accessed on 29 November 2022).
- Sculley, J.A.; Corbridge, S.J.; Prieto-Centurion, V.; Kallstrom, T.J.; Lewarski, J.; Tan, A.-Y.M.; Krishnan, J.A. Home Oxygen Therapy for Patients With COPD: Time for a Reboot. Respir. Care 2019, 64, 1574–1585. [Google Scholar] [CrossRef]
- Treatment of Acute COPD Exacerbation—Pulmonary Disorders. Merck Manuals Professional Edition. Available online: https://www.merckmanuals.com/professional/pulmonary-disorders/chronic-obstructive-pulmonary-disease-and-related-disorders/treatment-of-acute-copd-exacerbation (accessed on 29 November 2022).
- Chaney, J.C.; Jones, K.; Grathwohl, K.; Olivier, K.N. Implementation of an Oxygen Therapy Clinic to Manage Users of Long-Term Oxygen Therapy. Chest 2002, 122, 1661–1667. [Google Scholar] [CrossRef][Green Version]
- Oba, Y.; Salzman, G.A.; Willsie, S.K. Reevaluation of Continuous Oxygen Therapy after Initial Prescription in Patients with Chronic Obstructive Pulmonary Disease. Respir. Care 2000, 45, 401–406. [Google Scholar]
- Górecka, D.; Gorzelak, K.; Sliwiński, P.; Tobiasz, M.; Zieliński, J. Effect of Long-Term Oxygen Therapy on Survival in Patients with Chronic Obstructive Pulmonary Disease with Moderate Hypoxaemia. Thorax 1997, 52, 674–679. [Google Scholar] [CrossRef]
- Lipworth, B.; Skinner, D.; Devereux, G.; Thomas, V.; Ling Zhi Jie, J.; Martin, J.; Carter, V.; Price, D.B. Underuse of β-Blockers in Heart Failure and Chronic Obstructive Pulmonary Disease. Heart 2016, 102, 1909–1914. [Google Scholar] [CrossRef]
- Gulea, C.; Zakeri, R.; Alderman, V.; Morgan, A.; Ross, J.; Quint, J.K. Beta-Blocker Therapy in Patients with COPD: A Systematic Literature Review and Meta-Analysis with Multiple Treatment Comparison. Respir. Res. 2021, 22, 64. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Y.; Ding, N.; Lu, L.; Chen, Y. Beta-Blockers Reduced the Risk of Mortality and Exacerbation in Patients with COPD: A Meta-Analysis of Observational Studies. PLoS ONE 2014, 9, e113048. [Google Scholar] [CrossRef]
- The BRONCHIOLE investigators; Sundh, J.; Magnuson, A.; Montgomery, S.; Andell, P.; Rindler, G.; Fröbert, O. Beta-BlockeRs to PatieNts with CHronIc Obstructive PuLmonary DiseasE (BRONCHIOLE)—Study Protocol from a Randomized Controlled Trial. Trials 2020, 21, 123. [Google Scholar] [CrossRef]
- Dransfield, M.T.; Voelker, H.; Bhatt, S.P.; Brenner, K.; Casaburi, R.; Come, C.E.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Han, M.K.; et al. Metoprolol for the Prevention of Acute Exacerbations of COPD. N. Engl. J. Med. 2019, 381, 2304–2314. [Google Scholar] [CrossRef]
- Malinovschi, A.; Masoero, M.; Bellocchia, M.; Ciuffreda, A.; Solidoro, P.; Mattei, A.; Mercante, L.; Heffler, E.; Rolla, G.; Bucca, C. Severe Vitamin D Deficiency Is Associated with Frequent Exacerbations and Hospitalization in COPD Patients. Respir. Res. 2014, 15, 131. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Mathyssen, C.; Rafiq, R.; de Jongh, R.T.; Camargo, C.A.; Griffiths, C.J.; Janssens, W.; Martineau, A.R. Vitamin D to Prevent Exacerbations of COPD: Systematic Review and Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Thorax 2019, 74, 337–345. [Google Scholar] [CrossRef]
- Ferrari, R.; Caram, L.M.O.; Tanni, S.E.; Godoy, I.; Rupp de Paiva, S.A. The Relationship between Vitamin D Status and Exacerbation in COPD Patients– a Literature Review. Respir. Med. 2018, 139, 34–38. [Google Scholar] [CrossRef]
- Yang, I.V.; Schwartz, D.A. Epigenetic control of gene expression in the lung. Am. J. Resp. Crit. Care Med. 2011, 183, 1295–1301. [Google Scholar] [CrossRef]
- Tzortzaki, E.G.; Papi, A.; Neofytou, E. Immune and genetic mechanisms in COPD: Possible targets for therapeutic interventions. Curr. Drug Targets. 2013, 14, 141–148. [Google Scholar] [CrossRef]
- Qiu, W.; Baccarelli, A.; Carey, V.J. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 2012, 185, 373–381. [Google Scholar] [CrossRef]
- Adam, M.; Schikowski, T.; Carsin, A.E. Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef]
- Heaney, L.G.; Mcgarvey, L.P. Personalised medicine for asthma and chronic obstructive pulmonary disease. Respiration 2017, 93, 153–161. [Google Scholar] [CrossRef]
MIC90 of Indicated Drug (μg/mL) | |||
---|---|---|---|
Bacterial Organism: | Gemifloxacin | Moxifloxacin | Levofloxacin |
Haemophilus influenzae | 0.03 | 0.06 | 0.06 |
Moraxella catarrhalis | 0.015 | 0.03 | 0.03 |
Streptococcus pneumoniae | 0.03 | 0.12 | 1.0 |
Pseudomonas aeruginosa | >8.0 | 8 | 32 |
Study Author | Viral Infection Detected | Detection Technique | Comments |
---|---|---|---|
Ruiz-González et al. [23] | Influenza A (n = 34; 39.5%) Rhinovirus (n = 20; 23.3%) Coronavirus (n = 10; 11.6%) Respiratory syncytial virus (n = 9; 10.5%) | RT-PCR | Out of 127 patients included in the study, 57 patients (44.9%) had a viral infection detected via PCR, and 29 patients (22.8%) had both bacterial and viral infections detected via PCR. The four most prevalent viral isolates are listed. |
Kim et al. [24] | Influenza virus (n = 34; 14.1%): Influenza A (n = 33; 13.7%) Influenza B (n = 1; 0.4%) Rhinovirus (n = 25; 10.4%) Parainfluenza (n = 23; 9.5%) Human coronavirus (n = 15; 6.2%) | RT-PCR | Notably, 101 (41.9%) of the included patients with acute COPD exacerbations had respiratory viral infections detected. The four most prevalent isolates are listed. [Note: this study was published in 2016, before the identification of SARS-CoV-2, COVID-19] |
Vanspauwen et al. [25] | Zero cases of mimivirus detected | PCR | The presence of mimivirus antibodies in patients with pneumonia suggests a possibility that this virus is a respiratory pathogen and may potentially play a role in respiratory infections. PCR tests performed on the sputum samples of 220 patients with stable COPD, and those experiencing acute exacerbation indicate that this virus does not play a role in COPD as none of the PCR tests detected cases of mimivirus. |
Perotin et al. [26] | Human rhinovirus (n = 9; 20%) human metapneumovirus (n = 8; 18%) Influenza A (n = 2; 4%) Influenza B (n = 1; 2%) | Multiplex PCR | Of the 45 patients included in this study, 20 patients (44%) had a viral respiratory infection associated with their AECOPD. The four most prevalent isolates are listed. |
Chen et al. [27] | Influenza-positive cases (n = 90) Influenza A (n = 68) Influenza B (n = 22) | PCR | PCR only tested for influenza, and 925 patients were included in the study. |
Biancardi et al. [28] | In hospitalized patients: Influenza A (31%) Rhinovirus (27%) Respiratory syncytial virus A/B (10%) Non-hospitalized patients: Influenza A (n = 642; 31%) Rhinovirus (n = 565; 27%) RSV A/B (n = 209; 10%) | Multiplex PCR | In 102 patients hospitalized for COPD exacerbation, 59 patients (58%) had a respiratory viral infection. The four most prevalent isolates are listed. Out of 8811 non-hospitalized patients experiencing COPD exacerbation, 5599 of those patients (64%) had viral respiratory pathogens identified via PCR. The four most prevalent isolates are listed. |
Kan-O et al. [29] | hMPV (n = 7; 15.9%) Parainfluenza virus (n = 4; 9.1%) HRV/enterovirus (n = 2; 4.5%) coronavirus (n = 2; 4.5%) respiratory syncytial virus (n = 2; 4.5%) | Multiplex PCR | In patients experiencing acute COPD exacerbations, 17 of those patients (38.6%) had respiratory viral infections identified via PCR. |
Yormaz et al. [30] | Rhinovirus (25%) Influenza A (13.1%) Coronavirus (11.8%) | PCR | In a study that included 110 patients, 50 of those patients (45.5%) had respiratory viral infections identified via PCR. |
Koul et al. [31] | Influenza (n = 18; 7.7%) Rhinovirus (n = 11; 4.7%) RSV-A (n = 5; 2.1%) Parainfluenza virus (n = 4; 1.7%) | PCR | In a study conducted in India, which included 233 patients, 46 of those patients (19.7%) had respiratory viral infections identified via PCR. |
McManus et al. [32] | Rhinovirus (n = 32) Adenovirus (n = 10) Parainfluenza-3 (n = 5) Influenza A-H3 (n = 3) | Multiplexed, nested PCR | Of the 136 patients included in this study, 37% had respiratory viral infections identified via PCR. |
Yin et al. [33] | Influenza A (9.5%) Human rhinovirus (8%) Influenza B (5.7%) | RT-PCR | A total of 264 patients were included in a study that was conducted in Shanghai, and 72 of those patients (27.3%) had respiratory viral infections identified via PCR. |
Van Rijn et al. [34] | Rhinovirus (n = 14; 61%) Influenza A (n = 3; 13%) coronavirus NL63 (n = 2; 9%) Coronavirus OC43 (n = 1; 4%) Parainfluenza virus 3 (n = 2; 9%) Parainfluenza virus 4 (n = 1; 4%) | qPCR | A total of 88 patients from the Bergen COPD exacerbation study were included, and 23 of those patients (26%) had viral respiratory infections identified via qPCR. |
Camargo et al. [35] | Respiratory syncytial virus (8%) Rhinovirus (4%) Influenza A (3%) Human metapneumovirus (3%) | PCR | Out of 76 patients included in this study, 19 patients (25%) had respiratory viral infections identified via PCR. The four most prevalent isolates are listed. |
Beckham et al. [36] | Picornavirus (n = 22) Coronavirus 229E/OC43 (n = 10) Influenza A/B (n = 3) Parainfluenza virus types 1–3 (n = 3) | RT-PCR | Out of the 96 patients included, 35 patients had a respiratory viral infection identified via PCR. The four most prevalent isolates are listed. |
Ko et al. [37] | Influenza A (7.3%) Coronavirus OC43 (4.6%) Rhinovirus (3.1%) Influenza B (2.7%) Respiratory syncytial virus (2.3%) | PCR | A total of 196 patients were included in this study, which was conducted in Hong Kong; 58 of those patients (22.1%) yielded positive viral PCR results. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenwasser, Y.; Berger, I.; Loewy, Z.G. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022, 11, 1513. https://doi.org/10.3390/pathogens11121513
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens. 2022; 11(12):1513. https://doi.org/10.3390/pathogens11121513
Chicago/Turabian StyleRosenwasser, Yehudis, Irene Berger, and Zvi G. Loewy. 2022. "Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations" Pathogens 11, no. 12: 1513. https://doi.org/10.3390/pathogens11121513
APA StyleRosenwasser, Y., Berger, I., & Loewy, Z. G. (2022). Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens, 11(12), 1513. https://doi.org/10.3390/pathogens11121513