Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China
Abstract
:1. Introduction
2. Results
2.1. Tick Samples
2.2. Detection and Analysis of Rickettsia
2.3. Detection and Analysis of Ehrlichia
2.4. Detection and Analysis of Anaplasma
3. Discussion
4. Methods
4.1. Sample Collection and DNA Extraction
4.2. Molecular Detection of Rickettsiale
4.3. Amplification and Analysis of Key Genes
4.4. Sequence and Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansfield, K.L.; Jizhou, L.; Phipps, L.P.; Johnson, N. Emerging ttick-borne viruses in the twenty-first century. Front. Cell. Infect. Microbiol. 2017, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef] [PubMed]
- Mediannikov, O.; Fenollar, F. Looking in ticks for human bacterial pathogens. Microb. Pathog. 2014, 77, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Rafinejad, J.; Choubdar, N.; Oshaghi, M.; Piazak, N.; Satvat, T.; Mohtarami, F.; Barmaki, A. Detection of Borrelia persica Infection in Ornithodoros tholozani using PCR targeting rrs gene and xenodiagnosis. Iran. J. Public Health 2011, 40, 138–145. [Google Scholar] [PubMed]
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef]
- Kamani, J.; Apanaskevich, D.A.; Gutiérrez, R.; Nachum-Biala, Y.; Baneth, G.; Harrus, S. Morphological and molecular identification of Rhipicephalus (Boophilus) microplus in Nigeria, West Africa: A threat to livestock health. Exp. Appl. Acarol. 2017, 73, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Khan, M.A.; Zahid, H.; Yaseen, P.M.; Qayash Khan, M.; Nawab, J.; Ur Rehman, Z.; Ateeq, M.; Khan, S.; Ibrahim, M. Seasonal dynamics, record of ticks infesting humans, wild and domestic animals and molecular phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa Pakistan. Front. Physiol. 2019, 10, 793. [Google Scholar] [CrossRef]
- Cordeiro, M.D.; de Azevedo Baêta, B.; Cepeda, P.B.; Teixeira, R.C.; Ribeiro, C.C.D.U.; de Almeida Valim, J.R.; Pinter, A.; da Fonseca, A.H. Experimental infection of Rickettsia parkeri in the Rhipicephalus microplus tick. Ticks Tick-Borne Dis. 2018, 9, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Deng, Y.P.; Yang, T.; Li, L.Y.; Cheng, T.Y.; Liu, G.H.; Duan, D.Y. Metagenomics of the midgut microbiome of Rhipicephalus microplus from China. Parasites Vectors 2022, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Tian, J.; Pan, X.; Qin, X.; Wang, W.; Chen, J.; Guo, W.; Li, K. Identification of Rickettsia spp., Anaplasma spp., and an Ehrlichia canis-like agent in Rhipicephalus microplus from Southwest and South-Central China. Ticks Tick-Borne Dis. 2022, 13, 101884. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.P.; Wang, Y.X.; Fan, Z.W.; Ji, Y.; Liu, M.J.; Zhang, W.H.; Li, X.L.; Zhou, S.X.; Li, H.; Liang, S.; et al. Mapping ticks and tick-borne pathogens in China. Nat. Commun. 2021, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, K.; Zhao, S.; Yan, Y.; Wang, H.; Jing, J.; Jian, F.; Wang, R.; Zhang, L.; Ning, C. Detection and phylogenetic characterization of Anaplasma capra: An emerging pathogen in sheep and goats in China. Front. Cell. Infect. Microbiol. 2018, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, W.B.; Pan, Y.S.; Jiang, B.G.; Du, C.H.; Que, T.C.; Zhan, L.; Wu, J.H.; Yu, M.H.; Cui, X.M.; et al. Detection of novel spotted fever group Rickettsiae (Rickettsiales: Rickettsiaceae) in ticks (Acari: Ixodidae) in Southwestern China. J. Med. Entomol. 2021, 58, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, M.; Wang, Z.; Wang, J.; Peng, Y.; Li, Y.; Guan, G.; Luo, J.; Yin, H. Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl. Environ. Microbiol. 2012, 78, 464–470. [Google Scholar] [CrossRef]
- Lu, M.; Tian, J.; Zhao, H.; Jiang, H.; Qin, X.; Wang, W.; Li, K. Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China. Pathogens 2022, 11, 606. [Google Scholar] [CrossRef]
- Lu, M.; Tang, G.P.; Bai, X.S.; Qin, X.C.; Wang, W.; Guo, W.P.; Li, K. Molecular Detection of tick-borne pathogens in ticks collected from Hainan Island, China. Biomed. Environ. Sci. 2021, 34, 581–586. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Zhang, X.; Li, Z.; Wang, Z.; Song, M.; Wei, F.; Wang, S.; Liu, Q. Characterization of rickettsiae in ticks in northeastern China. Parasites Vectors 2016, 9, 498. [Google Scholar] [CrossRef]
- Guo, W.P.; Wang, Y.H.; Lu, Q.; Xu, G.; Luo, Y.; Ni, X.; Zhou, E.M. Molecular detection of spotted fever group rickettsiae in hard ticks, northern China. Transbound. Emerg. Dis. 2019, 66, 1587–1596. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, J.; Choi, Y.J.; Kim, H.C.; Klein, T.A.; Chong, S.T.; Jiang, J.; Richards, A.L.; Jang, W.J. Tick-borne rickettsiae in Midwestern region of Republic of Korea. Acta Trop. 2021, 215, 105794. [Google Scholar] [CrossRef]
- Takhampunya, R.; Korkusol, A.; Pongpichit, C.; Yodin, K.; Rungrojn, A.; Chanarat, N.; Promsathaporn, S.; Monkanna, T.; Thaloengsok, S.; Tippayachai, B.; et al. Metagenomic Approach to Characterizing Disease Epidemiology in a Disease-Endemic Environment in Northern Thailand. Front. Microbiol. 2019, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Gurfield, N.; Grewal, S.; Cua, L.S.; Torres, P.J.; Kelley, S.T. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California. PeerJ 2017, 5, e3202. [Google Scholar] [CrossRef] [PubMed]
- Kaewmongkol, G.; Lukkana, N.; Yangtara, S.; Kaewmongkol, S.; Thengchaisri, N.; Sirinarumitr, T.; Jittapalapong, S.; Fenwick, S.G. Association of Ehrlichia canis, hemotropic Mycoplasma spp. and Anaplasma platys and severe anemia in dogs in Thailand. Vet. Microbiol. 2017, 201, 195–200. [Google Scholar] [CrossRef]
- Neave, M.J.; Mileto, P.; Joseph, A.; Reid, T.J.; Scott, A.; Williams, D.T.; Keyburn, A.L. Comparative genomic analysis of the first Ehrlichia canis detections in Australia. Ticks Tick-Borne Dis. 2022, 13, 101909. [Google Scholar] [CrossRef] [PubMed]
- Chisu, V.; Loi, F.; Mura, L.; Tanda, A.; Chessa, G.; Masala, G. Molecular detection of Theileria sergentii/orientalis/buffeli and Ehrlichia canis from aborted ovine and caprine products in Sardinia, Italy. Vet. Med. Sci. 2021, 7, 1762–1768. [Google Scholar] [CrossRef]
- Bezerra-Santos, M.A.; Nguyen, V.L.; Iatta, R.; Manoj, R.R.S.; Latrofa, M.S.; Hodžić, A.; Dantas-Torres, F.; Mendoza-Roldan, J.A.; Otranto, D. Genetic variability of Ehrlichia canis TRP36 in ticks, dogs, and red foxes from Eurasia. Vet. Microbiol. 2021, 255, 109037. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Liu, Z.; Liu, J.; Yang, J.; Li, Q.; Li, Y.; Luo, J.; Yin, H. Molecular survey of Anaplasma and Ehrlichia of red deer and Sika deer in Gansu, China in 2013. Transbound. Emerg. Dis. 2016, 63, e228–e236. [Google Scholar] [CrossRef]
- Conrad, M.E. Ehrlichia canis: A tick-borne rickettsial-like infection in humans living in the southeastern United States. Am. J. Med. Sci. 1989, 297, 35–37. [Google Scholar] [CrossRef]
- Bouza-Mora, L.; Dolz, G.; Solórzano-Morales, A.; Romero-Zuñiga, J.J.; Salazar-Sánchez, L.; Labruna, M.B.; Aguiar, D.M. Novel genotype of Ehrlichia canis detected in samples of human blood bank donors in Costa Rica. Ticks Tick-Borne Dis. 2017, 8, 36–40. [Google Scholar] [CrossRef]
- Moura de Aguiar, D.; Pessoa Araújo Junior, J.; Nakazato, L.; Bard, E.; Aguilar-Bultet, L.; Vorimore, F.; Leonidovich Popov, V.; Moleta Colodel, E.; Cabezas-Cruz, A. Isolation and characterization of a novel pathogenic strain of Ehrlichia minasensis. Microorganisms 2019, 7, 528. [Google Scholar] [CrossRef]
- Ribeiro, M.F.; Lima, J.D. Morphology and development of Anaplasma marginale in midgut of engorged female ticks of Boophilus microplus. Vet. Parasitol. 1996, 61, 31–39. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.C.; Ma, L.; Jia, N.; Jiang, B.G.; Jiang, R.R.; Huo, Q.B.; Wang, Y.W.; Liu, H.B.; Chu, Y.L.; et al. Human infection with a novel tick-borne Anaplasma species in China: A surveillance study. Lancet Infect. Dis. 2015, 15, 663–670. [Google Scholar] [CrossRef]
- Chochlakis, D.; Ioannou, I.; Tselentis, Y.; Psaroulaki, A. Human anaplasmosis and Anaplasma ovis variant. Emerg. Infect. Dis. 2010, 16, 1031–1032. [Google Scholar] [CrossRef] [PubMed]
- Namgyal, J.; Lysyk, T.J.; Couloigner, I.; Checkley, S.; Gurung, R.B.; Tenzin, T.; Dorjee, S.; Cork, S.C. Identification, Distribution, and Habitat Suitability Models of Ixodid Tick Species in Cattle in Eastern Bhutan. Trop. Med. Infect. Dis. 2021, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.P.; Tian, J.H.; Lin, X.D.; Ni, X.B.; Chen, X.P.; Liao, Y.; Yang, S.Y.; Dumler, J.S.; Holmes, E.C.; Zhang, Y.Z. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci. Rep. 2016, 6, 38770. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Guindon, S.; Delsuc, F.; Dufayard, J.F.; Gascuel, O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 2009, 537, 113–137. [Google Scholar] [CrossRef] [Green Version]
Rickettsiales Species | Qianxinan | Liupanshui | Bijie | Total | |
---|---|---|---|---|---|
Rickettsia | Candidatus Rickettsia jingxinensis | 72/81 (88.89%) | 126/126 (100.00%) | 69/69 (100.00%) | 267/276 (96.74%) |
Ehrlichia | Ehrlichia canis | 17/81 (20.99%) | 0/126 (0.00%) | 0/69 (0.00%) | 16/276 (6.16%) |
Ehrlichia minasensis | 2/81 (2.47%) | 7/126 (5.56%) | 0/69 (0.00%) | 9/276 (3.26%) | |
Ehrlichia sp. | 0/81 (0.00%) | 5/126 (3.97%) | 7/69 (10.14%) | 12/276 (4.35%) | |
Anaplasma | Anaplasma capra | 4/81 (4.94%) | 0/126 (0.00%) | 0/69 (0.00%) | 4/276 (1.45%) |
Anaplasma marginale | 0/81 (0.00%) | 2/126 (1.59%) | 30/69 (43.48%) | 32/276 (11.59%) | |
Anaplasma ovis | 8/81 (9.88%) | 0/126 (0.00%) | 0/69 (0.00%) | 8/276 (2.90%) | |
Candidatus Anaplasma boleense | 0/81 (0.00%) | 0/126 (0.00%) | 6/69 (8.70%) | 6/276 (2.17%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Meng, C.; Gao, X.; Sun, Y.; Zhang, J.; Tang, G.; Li, Y.; Li, M.; Zhou, G.; Wang, W.; et al. Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China. Pathogens 2022, 11, 1108. https://doi.org/10.3390/pathogens11101108
Lu M, Meng C, Gao X, Sun Y, Zhang J, Tang G, Li Y, Li M, Zhou G, Wang W, et al. Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China. Pathogens. 2022; 11(10):1108. https://doi.org/10.3390/pathogens11101108
Chicago/Turabian StyleLu, Miao, Chao Meng, Xiang Gao, Yue Sun, Jun Zhang, Guangpeng Tang, Yilin Li, Mengyao Li, Guangyi Zhou, Wen Wang, and et al. 2022. "Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China" Pathogens 11, no. 10: 1108. https://doi.org/10.3390/pathogens11101108
APA StyleLu, M., Meng, C., Gao, X., Sun, Y., Zhang, J., Tang, G., Li, Y., Li, M., Zhou, G., Wang, W., & Li, K. (2022). Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China. Pathogens, 11(10), 1108. https://doi.org/10.3390/pathogens11101108