Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Nucleic acid Extraction
2.3. Real-Time PCRs
2.4. Statistics
2.5. Ethics
3. Results
3.1. Adaptation of the Oligonucleotide Compositions to Increase the Sensitivity of S. japonicum Complex PCR
3.2. PCR Reactions with Residual Serum Samples from Patients with S. mekongi Infections
3.3. PCR Reactions with Negative Control Residual Serum Samples from Patients with S. mansoni or S. haematobium Infections
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Contig of a Sjr2-Like Sequence as Identified in both S. mekongi and S. malayensis |
5‘-CCCTAGATTCTCGCTCGATCGATGTCTGCTGCGTCTCCGAAATGCATATACAGGATCCAAGTACAAACATTCGCTCGACCTCACCTTGTAAAGATAAAGAAGCGGTCCGGTTCACCCTTCGTGTTTCCGGAGACGCCATCGCTACCACTCGAGGCCTTGCTAGTGTAGGCATAGCACTAAATTCAAAAGCTGAACAGGCTCTCCTTCACTGGATTCCCATAGATAGTCGCTTATGCGCTGTCCGTCTAAACGGGAGGGTAAGAACTCGTAAAGATAGGGACACACGCCGTTGCGTTTTAGTTATGTCTGCCTAAGCTCCCAGTGATTGAAGCTCTGATGAAGTAAAAGATTAATTTTACAGAAAGCTTTCCGACCTCCTTCGGAAAGCTAAGAGTACTGATGTAGTGATCGTGGCTGGTGATTTTAATGCTCAAGTAGGTAGATTAGGCGAAACTGAAAGGCACCTAGGTGGATCCTATGGTGTCGAGGCTCAACGAACAGACAATGGCGACCGTCTGTTACAACTATGTTCGAATAACCATCTATTTCTCGCAAGCACCAACTTTAAATATAAGGAAAGACATCAGTTGACACAGCGGCCCCCACAGTCAGCTCAACGTTGGACTCAAATAGACCACATTGCTATCAGCCACCGTTGGAGAGGCTCGATAGAAGACTGCCGCTCATTTTGGAGCACATGTTTAGATTCAGACCATGCTCTAGTACGAGCGCGTATTAGTCTGCGTCTCACTGGACGTAAAGGATCCACGGCAAGGATCCCCGTCAGAATTCAACTTAATGATGAAAAAGTCAAAAATACATTTTAGGAACAACTAGAAAACCAATTGGTCAACTGTGTAAGCCATACCCATCCCGAGTCAGCTTGAAATGATATCCAAAAAGCTGTTAAAACAGTAGTAATGTCTACTAGTAAACCAAGCCATAAAGCTAAGAAAACTCAGTGGATTTCAGCTGCGTCTACTGAACTGATAGATGCTCAGCAACACATCCCGTCTAGTTCTAAATAAGATGAGGAGCGAAGGCAGCCTAAACGCAAACTGGTTAAAAGCTTACGCAATGATCGTGAGCAGTGGTGGGTGGCGAAAGCTGGAGATGGAAAAGACAGTGGCAATAGGTAACAGTAGGCAACTGTTTAGACTTATCAAGCAAACGGGTATCAGAAATCACATTGTAAGTAAAATTATCTCAGAAAAGGATGGGAGCATTATTCACTGTCAATCCAGAAGCTTGGACCGATGAGCAAAACACTTTAGGGAACAGTTCAAGTGACCCTCGGCCTCATACCAGTTGCCCACCATTCCCAAGCAATCGGAATGGCAAGTTAATATTGGTCCCCCAAGTCTTAGTGAGGTTGAGAAGACTATAGGAAATCAAAAGCGAGGGAGAGCAGCAAGACCTGATGGATTAACCCTTGAGATATTTAAGGATGGTAGT-3‘ |
Contig of aSjCHGCS19-Like Sequence as Identified in S. mekongi Variant 1 |
5’-GGGCTAGCACTCCCATCCCTGAAAACACAAGTTTGCTAAAAAAAAAACGATAACCAGATTAAACAAGCTAAACCATTTAAACTCTGTCCTGAGAGTGGAAGGAATGATTATGACGCCTCATGGTGAAATCCGAGATTCTTTGGAATTCATGAGGCCGATGCCCCTTCTAACAACCAGAGTAAAACTTTTTATAGGTGAGTGGGATATTCGAACAATGTGGAAGAGCGGGAAGACCAATCAAATAGCAGCAGATATAAAGAGATACAACTTGACAGTGCTCGGAATCAGTGAAACCCAGTGGACTCAAGTTGGATAGAAAACATTGGCTACGGGAGAGATGCTACTATACTCCGGTCACGAAGAGGAAAATGCTTCTCACACCCAAGGACTTGATCTGATGCTGTCCAAAACAGCACGTAATGCACTTGTGGGATGGGAACCACGTGGACCCAGGATCATCAAAGCATCTTTCAAAACAATGAAGAAGGGGATTACAATCAATATTATCCAATGTTATGTACCCACCAATGACGGCAACGACGAGGACAAAGATCAGTTTTATGATAGGTTGCAATCAATTATGGCGAAGTGTTCAGGAAAGGACCTGACAATCCTGATGGGGGACCTAAACGCCAAAGTTAAAATGGACAACACCAGATATGAAGAAATCATGGGACGACAGGGACTGGGAGAAAGAAATGACAATCTTGAAAGATTTACAAACCTATGTGCTTTCAGTAAAATGGTTAAAGGTAATACAATATTCCCCCCCCCAAACAAACCCATACACAAGGCTACATGGGTCTCATCAGATCATACTAAAGAGAATCAAATCGATCATATATGCATCAATAAAAAATTCAGATCAATCGAAGATGTGCGAACAAGGAGAGGAGCTGACATAGCTTCAGATCACCACCTGGTGGTTACTAAAATGAAACTGAAGCTAAAGAAGCAGTGGACAACTGGAGTAACAGCAGTACGACGGTTCAATAAAGCCTTTATTCGAGATACTGACAAACGCAAGGAGTTCGAAATAGCTCTCAACAACAGGTTCCAAGCTTTACAAGATCTACTGAAAAAAGAAACTACTATGGGGCGAAACTGGAAAGGAATCACAGAAGCACTAACTTCAACGTGTCAGGGGGTTCTGGGCCGAAAACAGCACCATTATAAGTAGTGAATTTTCACTGAAACATTGAGGAAAATTCAGCAAAGGAGGAACAAGAAGACATAAATCAACAACAGCGGAAC-3’ |
Contig of aSjCHGCS19-Like Sequence as Identified in S. mekongi Variant 2 |
5’-AACAACTGGTTCCAAGCCTTACAAGGTCTACCGAAAGAAGAAGAAACTACCATTCGGGACAACTGAAAAGAAATCATAGAAGCACTAACGTCAACGTGTCAGGAGGTTCTGGGCCGCAAAAAGCATCATTAAAAGGAATGGATCTCCAATGAGACATTGAGCAAAATTCAACAAAGAAGGAACAAAAAGACAGAAATCAACAATAGCCGAACAAGAGCAGAGAAAATCAAGGCACAAACTGAATACACAGAAGCAAACAAACAAGAAGAGCACTATAGCCGACAAACACAAATACATTCGAAGGCCTTGCAACGACAGCGGAAAAAAGCTGCAAGAGAAGGAAATATGAAACAACTATGTGACACAACGAAACATCTGGCAGGCAAATATAGTAAACCAGAGCGACCGATCAAGAACGAAGAAGATAAGCCAATCACCGAGAATTAAAAGCAAAGAAACAGATGGGTAGAATACTTTGAGGGACTCCTAAGTAGGCCAGCTCCACTGAGCCCACCAGGCATCGACGCAGCACCTGCAGATCTCCCGATAGATATCACTCCACCAACAATAGAAGAAATCAAGATGGCCATCAGACAAATCAAAAGTGGGAAAGCAGCAGGATCTGACAATATGCCAGCTGAAACATTCAAGTCAGATATAGATGTAACGGCAAGGATACTCCACGTTTAATTTAGGAGGATCTGGGAGGAAGAACAAGTGCCAGCAGACTGGAAAGAAGGACACCTTATCAAGATGCCAAAGAAAGGAGATTTGAGCGAATGTGAGAACTACATAGAGATCACACTACTGTCGGTACCAGGAAAAGTCTTCAACAGAGTGTTGTTGAACAGAATGAAAAATTCAGTGGATGCTCAACTTCGAGATCAACAGGCTGGTTTCCGTAAGGATTGGTATTTCACAGACCAAATCGCAACACTATGGATTATCGTTGAACATTCAATTGAGTGGAAATCGTCACTGTACATCAACTTCACTGATTATGAGAAGGCGTTTGACAGTGTAGATAGGAGGACACTATGGAAACTTCTTCGACACTACGGCGTACCAGAGAAACTCGTCAACATCATCCGGAACTCTCACGACGGACTACAGTGCAAAATCGTGCATGGAGGATAGCTGAAAAATGCATTCCCAATGAAGACCGGAGTCAGACAAGGTTGTCTACTCTCGCCATTCCTCTTTCTTCTAGTAGTTAACTGGATCATGGAGACCTTCACATCTGAG-3’ |
Contig of aSjCHGCS19-Like Sequence as Identified in S. mekongi Variant 3 |
5’-GCAAGGATACTCTACGTTTTATTCAAAAAGATCTGGAAGGAAGAACAAGTGCCGGCAGACTGGAAAGAAGGACATCTTATCAAGATACCTAAGAAAGGAGATTTGAGCAAATATGAGAACTAAAGAGAGATCACGCTACTGTCGATAGCAGGGAAAATCTTCAACAGAGTATTGTTGAACAGAATGAAAGATTCAGTGGAGGCTCAACTTCGGGATCAACAGGCCGGTTTTCGTAAGGATCAGTCGTGCACAGACCAAATCGCAACACTACGGATCATCGTTGAACAATCAATTGAATAGAACTCGCCACTGTACATCAACTTCATTGATTATGAAAAGGCGTTTGATAGTGTAAATAGGAGAACACTATGGAAACTTCTTCGACTCTACGGCGTACCAGAAAAACTCGTCAACATCATCCGGAACTCTTACGACGGAACACAGTGTAAAATTGTGCATGAAGGACAGCAGACAAATGCATTCACAGTGAGGACCGGAGTCATACAAGGCTGCCTACTCTCGCCTGTTCTCTTCCTTATAGTGGTTGACTAGATTATGAAGACCTCCACATCTGAGGGGATGCACGGAATTGAATGGACAAGTAGGATGCAACTCGATGATTTGGACTTTGTGGATGATCTAACTTTCTTAGCACATACACATCAACAAATGCAAGCAAAGACAACCAGTGTAACAGCAACTTCAGCATCAGTAGGCCTGAACATACATAAGGGAAAGAGCAAGATTCTTAAATACAACATAGGGAGCACCAACCCAATTCAACTTGATGGAGAAACTCTGGGAGAAGTGGATACTTTTATATACTTGGGGAGCGTTATCGATGAACAAGGAGGGTCGGAGGAAGATGTAAACCCAAAGATTGGTAAAGCCAAGGCAGCATTTCTACAGTGAAAAACATATGGGACTCAAAACAACTGTCAACTAACCTCAAAGTCAGACTCTTTAATTCGAACGTCAAAACAGTTCTGCTATATGGAGCTGAAACATGGAAAATCACTGCAAACATCCTCAGAAGGGTACGAGTATTTATAAACAACTGCCTACACATGATATTGACTGTCCGTTGGCCGAAAACCATCAGCAACGGCTTACTATGGGAGAGGACAAACCAACTTCCTTTCGAAGAGGAAACTAGGATAAGACGTTGGGAATGGATAGGACAATCACTGCTGAAATCATGAGACTGCATCACTAGACAAACATTAACATGGAATTTTGTTGGAAAACGTAAAAGAGGAAGGCCAGAGAACACCCGGTGTGGAGATTGGAAACAGAAATTTAAAAAGAAAAAAGGAACCGGAAAAACCTGGAACGGATGGCCCAGGGAGAGTTTAA-3’ |
Contig of aSjCHGCS19-Like Sequence as Identified in S. malayensis |
CGGGAGAGATGCTATTATACTCCGGCCACGAGAGGGAAAATGCTTCTAACACCCAAGGAGTTGATTAAATGCTGTCCAAAGAAGCACGTAATGCATTTGTGGGATTAGAACCACATGGACCCAGGATCATCAATGCATCTTTCAAAACAATGATGAAGAGGATTACAATGAATACTATCCAATATTATGCACTCTCCAACGATAGCAACGATGAGGATAAAGATCGATTTTATGGTAGGCTATAGTGAAGTAGTTATAGTGAAGTGCCCAGGAAAGGATCTGATAATTCTGTTGGGGGGGTTCCTAAACCCCAAAGTCAGAATGAACAACTCCGGATATGAAGAAATCATGGGACGACAGGGACAGGGAAGAAATGAGAATGGTGAATTATTTACAAATCTATGTGCTTTCAACAAAATGGTTATAGGTGGTACGATATTCTCCCACAAACGCATACACAAGGTTACATGGAGCTCTTCGGATCATACTACAGTGAATCAAATCGATCATATATGTATCAATAAAAAATTCAGAAGATCAATGGAAGGTGTGCGAACAAGGTGAGGAGTTGATATAGCATCAGACCACCACCTGGTGGTTGCTAAAGTGAAACTGAAGCTAAAGAAGCAATGGACAACTGGAGTGTCAGCAGTACAACGGTTCAATACAGCCTTTATTCAAAATACTGGCAAACTTAAGGAATTAAAAATAGCTCTCAACAACAGGTTCCAAGCCTCACAAGATCTACTGAAAGAAGAAGAAACCACTATGGAGGACAACTGGGGAGGAATCAGAGAAGCACTAACTTCAACGTTTCAGGGGGGTTCTGGGCCGCAAAAAGCACCATTATAAGGAATGGATCTCCACTGGGACCCTAAGTAAAATTCAATAAAGGAGGAACAAGAAGACAGAAATCAAGAACAGCCGAACAAGAGCAGAGAAAATCATTGTACAAACTAGATACACAGAAGCAGATAAGCAAGTAAAGAAGAGCATTAAATCCGACAAACAGAAACACATCGAAGGCCTTGCAACGATAGCAGAGAAGGCTGCAAGAGAAGGAAATATGAAACAGCTATACGACACAACGAAGAAACTGGCAGATAAACATGGTAAACCAGAGCGACCGGTCAAGAACAAAGAAGGCAAGACACTCCCTGAAATTCAAGAACAAAAGAATAGGTGGGTAGAACACTTTGAGGAACTCTTGAATAGGCCAGCTCCACTGAACCCACCGGACATCAAAGCAGCACCTACAGATCTCCCGATAGATGTCACTCCACCAACGGTGGAAGAAATCAAGATGGCCATCAGACAAATCAAAAGTGGGAAAGCAGCAGGACCAGACGATATACCAGCTGAAGTACTCAGGTCAAACACAGATGTAACAGTAAGGATGCTCCATGTTTTATTTAAAAAGATCTGGGAGGAAGAACAAGTGCCGACAGATTGGAAGGAAGGACATCTTATAAGAATTACAAATAAAGAAGATTTAAGAAAATGTGAGAACTATAGGGGGATCACACTACTGTCAGTACCAGGGAGTCTTCAACAGAGTGTTGCTGAACAGAATGAAAGATTCAGTGGTACTTAACTTTGAAATCAACAGGCTGGTTTTCGTTAGGATCGTTCGTGCACAGACCAAATCGCAACACTACGGATCACCGTTGAACAATCAATTGGATGGAACTCGTCACTGTACATCAACTGCATTGGCTATGAGGTATTTGACAGTGTGGACAGGAGAACACTATGAAAACTTCATCGACACTACATCGTACCAGAGGAACTCGTCAACATCATCTGAAACTCTTACGACGAAACACAGTTCAAAGTTGTTCATGGGGGGACAGCTGACAAATACATTCCCAATGAAGACTGTAGTCAGACAAGGCTGCATACTCTCGCCTTTTCTCTTCCTTCTAATGGTTGATTGGATCATGAAGACCTCCACATCTGAGAAAATGCACAGAATTCAATGAACAAGTAGGATACAATTCGATGAATTGGACTTCGCGGATGATCTAGCTCTCCTAACACATATACACCAACAAACACAAGTGACGACAACCAACGTAGCAGCAACCTCAGCATCAGTAGGCCTGAACATACATAAGGGAAAGAGCAAGATCCTCAAATACAACACAAGGAGCACTAACCCAATTGAATTTGATGGAGCAACTCTGAAAGAAGTGGATGCTTTTACGTACGTGGGGAGCATCATCGATAAACAAAGAGGGTCCGACACAGATGTAAAGGCAAGGAATGGCAAAGCCAGAGCAGCATTCCTACCTTTGAAAAACATGTAGGATTTAAAACAAATGTCAACGAACTTCATAGTCAGACTCTTCAATTTGAACATGTAAACAGTTCTGTTGTATGGAGCTGAAACGTGGAGAACTACTGTAAACATCATTAGAAGAGTACATGTATTTTTAATCTACTGTCTACACATGATACTGAACGTCGGTTGGCCGGGAACCATCAGCAACAGTTTACTATGGGAGAAAACAAACCAACTTCCAGCTGAAGAGGAAATTAAGAAAAGACGTTGGAAATGGATAGGACGTTCATTACCATCAGACTGCATCACGAGACAAGCATTAACTTGGAATCCTGTTGGAAAACGGAAAAGAGGAAGGCCAAAGAACACACTGCATCTAGAGTTAGAAGCAGATATTAGAAGGATGAACAGCAACTGGAAACAATTGGAAAGGATTGCTCAGGACAGAGTCCGATGGAGAGTACTGGTGAGGGGGCTATGCTCCTCTGTGAGCGGTAACGGGCTTAAGTAAGT |
References
- Greer, G.J.; Ow-Yang, C.K.; Yong, H.S. Schistosoma malayensis n. sp.: A Schistosoma japonicum-complex schistosome from Peninsular Malaysia. J. Parasitol. 1988, 74, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Cnops, L.; Soentjens, P.; Clerinx, J.; Van Esbroeck, M. A Schistosoma haematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants. PLoS Negl. Trop. Dis. 2013, 7, e2413. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.L.; Zhang, L.J.; Deng, W.P.; Li, Y.L.; Lv, C.; Dai, S.M.; Feng, T.; Qin, Z.Q.; Duan, L.P.; Zhang, H.B.; et al. Contributions and achievements on schistosomiasis control and elimination in China by NIPD-CTDR. Adv. Parasitol. 2020, 110, 1–62. [Google Scholar] [PubMed]
- Gordon, C.A.; Kurscheid, J.; Williams, G.M.; Clements, A.C.A.; Li, Y.; Zhou, X.N.; Utzinger, J.; McManus, D.P.; Gray, D.J. Asian Schistosomiasis: Current Status and Prospects for Control Leading to Elimination. Trop. Med. Infect. Dis. 2019, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aula, O.P.; McManus, D.P.; Jones, M.K.; Gordon, C.A. Schistosomiasis with focus on Africa. Trop. Med. Infect. Dis. 2021, 6, 109. [Google Scholar] [CrossRef]
- Amoah, A.S.; Hoekstra, P.T.; Casacuberta-Partal, M.; Coffeng, L.E.; Corstjens, P.L.A.M.; Greco, B.; van Lieshout, L.; Lim, M.D.; Markwalter, C.F.; Odiere, M.R.; et al. Sensitive diagnostic tools and targeted drug administration strategies are needed to eliminate schistosomiasis. Lancet Infect. Dis. 2020, 20, e165–e172. [Google Scholar] [CrossRef]
- Wichmann, D.; Panning, M.; Quack, T.; Kramme, S.; Burchard, G.D.; Grevelding, C.; Drosten, C. Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Negl. Trop. Dis. 2009, 3, e422. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Poppert, S.; Von Thien, H.; Clerinx, J.; Dieckmann, S.; Jensenius, M.; Parola, P.; Richter, J.; Schunk, M.; Stich, A.; et al. Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis. BMC Infect. Dis. 2013, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, J.; Abbasi, I.; Ramzy, R.M.; Jourdane, J.; Ruppel, A. Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: A potential tool for monitoring schistosome-infested water. Am. J. Trop. Med. Hyg. 2001, 65, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, I.; Webster, B.L.; King, C.H.; Rollinson, D.; Hamburger, J. The substructure of three repetitive DNA regions of Schistosoma haematobium group species as a potential marker for species recognition and interbreeding detection. Parasit. Vectors 2017, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Guegan, H.; Fillaux, J.; Charpentier, E.; Robert-Gangneux, F.; Chauvin, P.; Guemas, E.; Boissier, J.; Valentin, A.; Cassaing, S.; Gangneux, J.P.; et al. Real-time PCR for diagnosis of imported schistosomiasis. PLoS Negl. Trop. Dis. 2019, 13, e0007711. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Lunardon, L.M.; Hahn, A.; Loderstädt, U.; Lindner, A.K.; Becker, S.L.; Mockenhaupt, F.P.; Weber, C.; Tannich, E. Evaluation of a duplex real-time PCR in human serum for simultaneous detection and differentiation of Schistosoma mansoni and Schistosoma haematobium infections—Cross-sectional study. Travel Med. Infect. Dis. 2021. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Fuss, A.; Mazigo, H.D.; Mueller, A. Evaluation of serum-based real-time PCR to detect Schistosoma mansoni infection before and after treatment. Infect. Dis. Poverty 2020, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Carsjens, I.; Rakotozandrindrainy, R.; Girmann, M.; Randriamampionona, N.; Maïga-Ascofaré, O.; Podbielski, A.; Hahn, A.; Frickmann, H.; Schwarz, N.G. Serology- and Blood-PCR-Based Screening for Schistosomiasis in Pregnant Women in Madagascar—A Cross-Sectional Study and Test Comparison Approach. Pathogens 2021, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, P.T.; van Esbroeck, M.; de Dood, C.J.; Corstjens, P.L.; Cnops, L.; van Zeijl-van der Ham, C.J.; Wammes, L.J.; van Dam, G.J.; Clerinx, J.; van Lieshout, L. Early diagnosis and follow-up of acute schistosomiasis in a cluster of infected Belgian travellers by detection of antibodies and circulating anodic antigen (CAA): A diagnostic evaluation study. Travel Med. Infect. Dis. 2021, 41, 102053. [Google Scholar] [CrossRef] [PubMed]
- Cnops, L.; Huyse, T.; Maniewski, U.; Soentjens, P.; Bottieau, E.; Van Esbroeck, M.; Clerinx, J. Acute Schistosomiasis with a Schistosoma mattheei × Schistosoma haematobium Hybrid Species in a Cluster of 34 Travelers Infected in South Africa. Clin. Infect. Dis. 2021, 72, 1693–1698. [Google Scholar] [CrossRef]
- Driscoll, A.J.; Kyle, J.L.; Remais, J. Development of a novel PCR assay capable of detecting a single Schistosoma japonicum cercaria recovered from Oncomelania hupensis. Parasitology 2005, 131, 497–500. [Google Scholar] [CrossRef]
- Laha, T.; Brindley, P.J.; Smout, M.J.; Verity, C.K.; McManus, D.P.; Loukas, A. Reverse transcriptase activity and untranslated region sharing of a new RTE-like, non-long terminal repeat retrotransposon from the human blood fluke, Schistosoma japonicum. Int. J. Parasitol. 2002, 32, 1163–1174. [Google Scholar] [CrossRef]
- Guo, J.J.; Zheng, H.J.; Xu, J.; Zhu, X.Q.; Wang, S.Y.; Xia, C.M. Sensitive and specific target sequences selected from retrotransposons of Schistosoma japonicum for the diagnosis of schistosomiasis. PLoS Negl. Trop. Dis. 2012, 6, e1579. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Li, Y.; Driguez, P.; Zeng, Q.; Yu, X.; Sun, H.; Cai, L.; He, Y.; Wang, W.; McManus, D.P. Clinical diagnostic value of viable Schistosoma japonicum eggs detected in host tissues. BMC Infect. Dis. 2017, 17, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Gu, K.; Zeng, Q.; Gao, L.; Cheng, D. Diagnostic Value of SjR2 Gene in Colonic Tissue from Schistosoma Japonicum Infected Hosts. Med. Sci. Monit. 2019, 25, 427–435. [Google Scholar] [CrossRef]
- Xia, C.M.; Rong, R.; Lu, Z.X.; Shi, C.J.; Xu, J.; Zhang, H.Q.; Gong, W.; Luo, W. Schistosoma japonicum: A PCR assay for the early detection and evaluation of treatment in a rabbit model. Exp. Parasitol. 2009, 121, 175–179. [Google Scholar] [CrossRef]
- Zhang, X.; He, C.C.; Liu, J.M.; Li, H.; Lu, K.; Fu, Z.Q.; Zhu, C.G.; Liu, Y.P.; Tong, L.B.; Zhou, D.B.; et al. Nested-PCR assay for detection of Schistosoma japonicum infection in domestic animals. Infect. Dis. Poverty 2017, 6, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Xing, W.; Yu, X.; Fu, W.; Wang, Y.; Zou, M.; Luo, Z.; Xu, D. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors 2016, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.W.; Remais, J. Quantitative detection of Schistosoma japonicum cercariae in water by real-time PCR. PLoS Negl. Trop. Dis. 2008, 2, e337. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, L.; Yin, X.; Hua, W.; Hou, M.; Ji, M.; Yu, C.; Wu, G. Application of DNA-based diagnostics in detection of schistosomal DNA in early infection and after drug treatment. Parasit. Vectors 2011, 4, 164. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Guan, Z.X.; Zhao, B.; Wang, Y.Y.; Cao, Y.; Zhang, H.Q.; Zhu, X.Q.; He, Y.K.; Xia, C.M. DNA detection of Schistosoma japonicum: Diagnostic validity of a LAMP assay for low-intensity infection and effects of chemotherapy in humans. PLoS Negl. Trop. Dis. 2015, 9, e0003668. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Rong, R.; Zhang, H.Q.; Shi, C.J.; Zhu, X.Q.; Xia, C.M. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int. J. Parasitol. 2010, 40, 327–331. [Google Scholar] [CrossRef]
- Xing, W.; Yu, X.; Feng, J.; Sun, K.; Fu, W.; Wang, Y.; Zou, M.; Xia, W.; Luo, Z.; He, H.; et al. Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in Hunan province of China. BMC Infect. Dis. 2017, 17, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weerakoon, K.G.; Gordon, C.A.; Gobert, G.N.; Cai, P.; McManus, D.P. Optimisation of a droplet digital PCR assay for the diagnosis of Schistosoma japonicum infection: A duplex approach with DNA binding dye chemistry. J. Microbiol. Methods 2016, 125, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuphisut, O.; Ajawatanawong, P.; Limpanont, Y.; Reamtong, O.; Nuamtanong, S.; Ampawong, S.; Chaimon, S.; Dekumyoy, P.; Watthanakulpanich, D.; Swierczewski, B.E.; et al. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit. Vectors 2018, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- Nickel, B.; Sayasone, S.; Vonghachack, Y.; Odermatt, P.; Marti, H. Schistosoma mansoni antigen detects Schistosoma mekongi infection. Acta Trop. 2015, 141, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Vonghachack, Y.; Sayasone, S.; Khieu, V.; Bergquist, R.; van Dam, G.J.; Hoekstra, P.T.; Corstjens, P.L.A.M.; Nickel, B.; Marti, H.; Utzinger, J.; et al. Comparison of novel and standard diagnostic tools for the detection of Schistosoma mekongi infection in Lao People’s Democratic Republic and Cambodia. Infect. Dis. Poverty 2017, 6, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerinx, J.; Cnops, L.; Huyse, T.; Tannich, E.; Van Esbroeck, M. Diagnostic issues of acute schistosomiasis with Schistosoma mekongi in a traveler: A case report. J. Travel Med. 2013, 20, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Khot, P.D.; Ko, D.L.; Hackman, R.C.; Fredricks, D.N. Development and optimization of quantitative PCR for the diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. BMC Infect. Dis. 2008, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Tenner-Racz, K.; Eggert, P.; Schwarz, N.G.; Poppert, S.; Tannich, E.; Hagen, R.M. Influence of parasite density and sample storage time on the reliability of Entamoeba histolytica-specific PCR from formalin-fixed and paraffin-embedded tissues. Diagn. Mol. Pathol. 2013, 22, 236–244. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.W.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Niesters, H.G. Quantitation of Viral Load Using Real-Time Amplification Techniques. Methods 2001, 25, 419–429. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, J.; Zhao, Y.; Gong, R.; Lu, X.; Gong, L.; Wang, Y. A highly sensitive TaqMan real-time PCR assay for early detection of Schistosoma species. Acta Trop. 2011, 120, 88–94. [Google Scholar] [CrossRef]
- Hoffmann, T.; Hahn, A.; Verweij, J.J.; Leboulle, G.; Landt, O.; Strube, C.; Kann, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time PCRs Applied to Human Stool Samples. Pathogens 2021, 10, 188. [Google Scholar] [CrossRef] [PubMed]
Forward Primer Name | Forward Primer Sequence | Reverse Primer Name | Reverse Primer Sequence | Probe Name | Probe Sequence |
---|---|---|---|---|---|
Consensus Primer PCR Targetingthe SjR2 Sequence (Primer Sequences Adapted from [17]) | |||||
SjR2 F | 5’-GAGGAAACCGAAAGGCACCTA-3’ | SjR2 Ri | 5’-GCTAATAGCAATGTGGTCTATTTGAGTCCA-3’ | SjR2 Asia P | 5’-CAGTAGGTAACTGTTTAGACTTATCAAGGAAACG-3’ |
Multi-Primer PCR Targetingthe SjR2 Sequence | |||||
SjR2 Smek F1 old | 5’-CGAGAGCGTGGGCGTTAGA-3’ | SjR2jap1(16) R | 5’-GTCCAGCGTTGGGTTGATTTT-3’ | SjR2 Asia P | 5’-CAGTAGGTAACTGTTTAGACTTATCAAGGAAACG-3’ |
SjR2 F1 | 5’-GGTGATTTTAATGCCCAAGTAGGTAGA-3’ | SjR2jap4(45) R | 5’-GTCCAGCGTTGAGTTGATTGT-3’ | ||
SjR2 Smek F1 | 5’-GGTGATTTTAATGCTCAAGTAGGTAGA-3’ | SjR2jap5(262) R | 5’-gTCCAACgTTgAgACgATTTT-3’ | ||
SjjR2jap10 F1 | 5’-GGTGACCTTAATGCTCAAGTAGGTAAA-3’ | SjR2jap7(11) R | 5’-GTTCAACGTTGAGACGATTTT-3’ | ||
SjR2 F | 5’-GAGGAAACCGAAAGGCACCTA-3’ | SjR2 Ri | 5’-GCTAATAGCAATGTGGTCTATTTGAGTCCA-3’ | ||
SjR2 Smek F | 5’-GGCGAAACTGAAAGGCACCTA-3’ | SjR2 Smekold Rii | 5’-AATTCTAGCAATGTGGTCTATTTGAGTCCA-3’ | ||
SjR2jap F lg | 5’-GGTAGACTAAGTCAGACTGAAAGACACTTA-3’ | SjR2 Smek Rii | 5’-TGATAGCAATGTGGTCTATTTGAGTCCA-3’ | ||
SjR2jap4 F (300) | 5’-AGTGAAAATGAGAGACACTTG-3’ | SjR2jap1(10) Rii | 5’-GGCGATGTGATCTAGTTGGGTTCA-3’ | ||
SjR2jap5 F (136) | 5’-GACCAAACAGAAAGACATTTA-3’ | SjR2jap3(252) Ri | 5’-GGCGATGTGATCTAGTTGGGTCCA-3’ | ||
Consensus Primer PCR Targetingthe SjCHGCS19 Sequence (Primer Sequences Unchanged from [19]) | |||||
Guo-SjCHGCS19 F | 5’-CCAAATCGCAACACTACG-3’ | Guo-SjCHGCS19 R | 5’-ATCGGATTCTCCTTGTTCAT-3’ | Guo2012 P | 5’-AATGGAACTCGTCAYTGTACATCAACTTCA-3’ |
Multi-Primer PCR Targetingthe SjCHGCS19 Sequence | |||||
7436 F | 5’-ACCCACCAGWCATCGAAGCA-3’ | 9292 A | 5’-RGCCTGTTGATCTCGAAGTTG-3’ | 9015 P | 5’-ACCAGGRAAAGTCTTCAACAGAGTGTT-3’ |
7443 F | 5’-CCACCAGWCATCGAAGCAGC-3’ | 9292 R | 5’-RGCCTGTTGATCTCGAAGTT-3’ | 3483 P | 5’-CACCAACGATGRAAGAAATCAAGATRGYY-3’ |
2980 F | 5’-RARAAAGCTGCAAGAGAAGG-3’ | 3604 R | 5’-TCCTGCTGCTTTCCCACTTT-3’ | ||
2983 F | 5’-RAAAGCTGCAAGAGAAGGAA-3’ | 3613 R | 5’-TGTCAGGTCCTGCTGCTTTC-3’ | ||
3956 F | 5’-ACAGAGGRATCACACTRTTGTCAGT-3’ | 3615 R | 5’-TTGTCAGGTCCTGCTGCTTT-3’ | ||
3956Sma F | 5’-ATAGGGGGATCACACTACTGTCAGT-3’ | 4113 R | 5’-RAAGTTGAGCATCCACTGAR-3’ | ||
3956Sme3 F | 5’-AAAGAGAGATCACGCTACTGTCGAT-3’ | 4113Sma R | 5’-AAAGTTAAGTACCACTGAA-3’ | ||
3956Sme3 F I | 5’-ACATAGAGATCACACTACTGTCGGT-3’ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frickmann, H.; Loderstädt, U.; Nickel, B.; Poppert, S.; Odermatt, P.; Sayasone, S.; Van Esbroeck, M.; Micalessi, I.; Cnops, L.; Adisakwattana, P.; et al. Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum. Pathogens 2021, 10, 1067. https://doi.org/10.3390/pathogens10081067
Frickmann H, Loderstädt U, Nickel B, Poppert S, Odermatt P, Sayasone S, Van Esbroeck M, Micalessi I, Cnops L, Adisakwattana P, et al. Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum. Pathogens. 2021; 10(8):1067. https://doi.org/10.3390/pathogens10081067
Chicago/Turabian StyleFrickmann, Hagen, Ulrike Loderstädt, Beatrice Nickel, Sven Poppert, Peter Odermatt, Somphou Sayasone, Marjan Van Esbroeck, Isabel Micalessi, Lieselotte Cnops, Poom Adisakwattana, and et al. 2021. "Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum" Pathogens 10, no. 8: 1067. https://doi.org/10.3390/pathogens10081067
APA StyleFrickmann, H., Loderstädt, U., Nickel, B., Poppert, S., Odermatt, P., Sayasone, S., Van Esbroeck, M., Micalessi, I., Cnops, L., Adisakwattana, P., Leboulle, G., Landt, O., Thye, T., & Tannich, E. (2021). Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum. Pathogens, 10(8), 1067. https://doi.org/10.3390/pathogens10081067