Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Schistosoma mekongi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1830 KiB  
Article
Low Prevalence of Schistosoma mekongi Infection and High Prevalence of Other Helminth Infections among Domestic Animals in Southern Lao People’s Democratic Republic
by Somphou Sayasone, Phonepadith Khattignavong, Sengdeuane Keomalaphet, Phoyphaylinh Prasayasith, Pheovaly Soundala, Sonesimmaly Sannikone, Takashi Kumagai, Souk Phomhaksa, Phouth Inthavong, Emilie Louise Akiko Matsumoto-Takahashi, Bouasy Hongvanthong, Paul T. Brey, Shigeyuki Kano and Moritoshi Iwagami
Trop. Med. Infect. Dis. 2023, 8(7), 372; https://doi.org/10.3390/tropicalmed8070372 - 18 Jul 2023
Cited by 1 | Viewed by 2509
Abstract
The prevalence of Schistosoma mekongi in humans in the Lao People’s Democratic Republic (Lao PDR) has been relatively well monitored and has decreased due to effective interventions such as preventative chemotherapy with mass drug administration of praziquantel and community awareness programs. However, the [...] Read more.
The prevalence of Schistosoma mekongi in humans in the Lao People’s Democratic Republic (Lao PDR) has been relatively well monitored and has decreased due to effective interventions such as preventative chemotherapy with mass drug administration of praziquantel and community awareness programs. However, the prevalence among potential domestic reservoir animals remains broadly unclear, except for a few villages in the endemic area. Therefore, we conducted S. mekongi surveys for the domestic animals that had contact with Mekong River water. We conducted a cross-sectional study of the domestic animals in the seven sentinel villages in the Khong and Mounlapamok Districts of Champasak Province in southern Lao PDR in 2018 by random sampling with a statistically reliable sample size. Stool samples of the five predominant domestic animal species, cattle (n = 160), pig (n = 154), buffalo (n = 149), dog (n = 143), and goat (n = 85), were collected and examined using parasitological FECT method and the LAMP technique. The microscopic analysis did not detect any eggs of S. mekongi in the stool samples of any animal species. However, S. mekongi DNA was detected by the LAMP test in dog stool samples (0.7%; 1/143). On the other hand, the prevalence of other helminths was quite high and heterogeneous among animal species and sentinel sites by the microscopic analysis. These findings suggested that an intervention for S. mekongi infection should focus solely on human populations. However, periodic surveillance for S. mekongi infection among dogs should be conducted to monitor a possible resurgence of S. mekongi infection in the domestic animal population. Full article
(This article belongs to the Special Issue Status and Perspective of Asian Schistosomiasis)
Show Figures

Figure 1

7 pages, 723 KiB  
Communication
Evaluation of Crude and Recombinant Antigens of Schistosoma japonicum for the Detection of Schistosoma mekongi Human Infection
by Jose Ma. M. Angeles, Atcharaphan Wanlop, Minh-Anh Dang-Trinh, Masashi Kirinoki, Shin-ichiro Kawazu and Aya Yajima
Diagnostics 2023, 13(2), 184; https://doi.org/10.3390/diagnostics13020184 - 4 Jan 2023
Cited by 4 | Viewed by 2732
Abstract
Asian schistosomiasis caused by the blood fluke Schistosoma mekongi is endemic in northern Cambodia and Southern Lao People’s Democratic Republic. The disease is mainly diagnosed by stool microscopy. However, serodiagnosis such as enzyme-linked immunosorbent assay (ELISA) with soluble egg antigen (SEA), has been [...] Read more.
Asian schistosomiasis caused by the blood fluke Schistosoma mekongi is endemic in northern Cambodia and Southern Lao People’s Democratic Republic. The disease is mainly diagnosed by stool microscopy. However, serodiagnosis such as enzyme-linked immunosorbent assay (ELISA) with soluble egg antigen (SEA), has been shown to have better sensitivity compared to the stool examination, especially in the settings with a low intensity of infection. To date, no recombinant antigen has been assessed using ELISA for the detection of S. mekongi infection, due to the lack of genome information for this schistosome species. Thus, the objective of this study is to evaluate several recombinant S. japonicum antigens that have been developed in our laboratory for the detection of S. mekongi infection. The crude antigen SjSEA and recombinant antigens Sj7TR, SjPCS, SjPRx-4, and SjChi-3 were evaluated in ELISA using serum samples positive for S. mekongi infection. The cross-reaction was checked using sera positive for Ophistorchis viverrini. ELISA results showed that S. japonicum SEA at low concentrations showed better diagnostic performance than the recombinant antigens tested using the archived serum samples from Cambodia. However, further optimization of the recombinant antigens should be conducted in future studies to improve their diagnostic performance for S. mekongi detection. Full article
(This article belongs to the Special Issue Molecular Diagnostics of Emerging Pathogens for Infectious Diseases)
Show Figures

Figure 1

9 pages, 967 KiB  
Article
Cloning, Expression and Evaluation of Thioredoxin Peroxidase-1 Antigen for the Serological Diagnosis of Schistosoma mekongi Human Infection
by Atcharaphan Wanlop, Jose Ma. M. Angeles, Adrian Miki C. Macalanda, Masashi Kirinoki, Yuma Ohari, Aya Yajima, Junya Yamagishi, Kevin Austin L. Ona and Shin-ichiro Kawazu
Diagnostics 2022, 12(12), 3077; https://doi.org/10.3390/diagnostics12123077 - 7 Dec 2022
Cited by 2 | Viewed by 2186
Abstract
Schistosoma mekongi, a blood fluke that causes Asian zoonotic schistosomiasis, is distributed in communities along the Mekong River in Cambodia and Lao People’s Democratic Republic. Decades of employing numerous control measures including mass drug administration using praziquantel have resulted in a decline [...] Read more.
Schistosoma mekongi, a blood fluke that causes Asian zoonotic schistosomiasis, is distributed in communities along the Mekong River in Cambodia and Lao People’s Democratic Republic. Decades of employing numerous control measures including mass drug administration using praziquantel have resulted in a decline in the prevalence of schistosomiasis mekongi. This, however, led to a decrease in sensitivity of Kato–Katz stool microscopy considered as the gold standard in diagnosis. In order to develop a serological assay with high sensitivity and specificity which can replace Kato–Katz, recombinant S. mekongi thioredoxin peroxidase-1 protein (rSmekTPx-1) was expressed and produced. Diagnostic performance of the rSmekTPx-1 antigen through ELISA for detecting human schistosomiasis was compared with that of recombinant protein of S. japonicum TPx-1 (rSjTPx-1) using serum samples collected from endemic foci in Cambodia. The sensitivity and specificity of rSmekTPx-1 in ELISA were 89.3% and 93.3%, respectively, while those of rSjTPx-1 were 71.4% and 66.7%, respectively. In addition, a higher Kappa value of 0.82 calculated between rSmekTPx-1 antigen ELISA and Kato–Katz confirmed better agreement than between rSjTPx-1 antigen ELISA and Kato–Katz (Kappa value 0.38). These results suggest that ELISA with rSmekTPx-1 antigen can be a potential diagnostic method for detecting active human S. mekongi infection. Full article
(This article belongs to the Special Issue Molecular Diagnostics of Emerging Pathogens for Infectious Diseases)
Show Figures

Figure 1

13 pages, 1762 KiB  
Article
Detection of Schistosoma mekongi DNA in Human Stool and Intermediate Host Snail Neotricula aperta via Loop-Mediated Isothermal Amplification Assay in Lao PDR
by Takashi Kumagai, Emilie Louise Akiko Matsumoto-Takahashi, Hirofumi Ishikawa, Sengdeuane Keomalaphet, Phonepadith Khattignavong, Pheovaly Soundala, Bouasy Hongvanthong, Kei Oyoshi, Yoshinobu Sasaki, Yousei Mizukami, Shigeyuki Kano, Paul T. Brey and Moritoshi Iwagami
Pathogens 2022, 11(12), 1413; https://doi.org/10.3390/pathogens11121413 - 24 Nov 2022
Cited by 6 | Viewed by 2401
Abstract
Schistosomiasis mekongi infection represents a public health concern in Laos and Cambodia. While both countries have made significant progress in disease control over the past few decades, eradication has not yet been achieved. Recently, several studies reported the application of loop-mediated isothermal amplification [...] Read more.
Schistosomiasis mekongi infection represents a public health concern in Laos and Cambodia. While both countries have made significant progress in disease control over the past few decades, eradication has not yet been achieved. Recently, several studies reported the application of loop-mediated isothermal amplification (LAMP) for detecting Schistosoma DNA in low-transmission settings. The objective of this study was to develop a LAMP assay for Schistosoma mekongi using a simple DNA extraction method. In particular, we evaluated the utility of the LAMP assay for detecting S. mekongi DNA in human stool and snail samples in endemic areas in Laos. We then used the LAMP assay results to develop a risk map for monitoring schistosomiasis mekongi and preventing epidemics. A total of 272 stool samples were collected from villagers on Khon Island in the southern part of Laos in 2016. DNA for LAMP assays was extracted via the hot-alkaline method. Following the Kato-Katz method, we determined that 0.4% (1/272) of the stool samples were positive for S. mekongi eggs, as opposed to 2.9% (8/272) for S. mekongi DNA based on the LAMP assays. Snail samples (n = 11,762) were annually collected along the riverside of Khon Island from 2016 to 2018. DNA was extracted from pooled snails as per the hot-alkaline method. The LAMP assay indicated that the prevalence of S. mekongi in snails was 0.26% in 2016, 0.08% in 2017, and less than 0.03% in 2018. Based on the LAMP assay results, a risk map for schistosomiasis with kernel density estimation was created, and the distribution of positive individuals and snails was consistent. In a subsequent survey of residents, schistosomiasis prevalence among villagers with latrines at home was lower than that among villagers without latrines. This is the first study to develop and evaluate a LAMP assay for S. mekongi detection in stools and snails. Our findings indicate that the LAMP assay is an effective method for monitoring pathogen prevalence and creating risk maps for schistosomiasis. Full article
(This article belongs to the Special Issue Advanced Diagnosis of Schistosomiasis)
Show Figures

Figure 1

15 pages, 299 KiB  
Article
Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum
by Hagen Frickmann, Ulrike Loderstädt, Beatrice Nickel, Sven Poppert, Peter Odermatt, Somphou Sayasone, Marjan Van Esbroeck, Isabel Micalessi, Lieselotte Cnops, Poom Adisakwattana, Gérard Leboulle, Olfert Landt, Thorsten Thye and Egbert Tannich
Pathogens 2021, 10(8), 1067; https://doi.org/10.3390/pathogens10081067 - 22 Aug 2021
Cited by 5 | Viewed by 2705
Abstract
While hybridization probe-based real-time PCR assays targeting highly repetitive multi-copy genome sequences for the diagnosis of S. mansoni complex or S. haematobium complex from human serum are well established, reports on the evaluation of respective assays for the identification of S. japonicum complex [...] Read more.
While hybridization probe-based real-time PCR assays targeting highly repetitive multi-copy genome sequences for the diagnosis of S. mansoni complex or S. haematobium complex from human serum are well established, reports on the evaluation of respective assays for the identification of S. japonicum complex DNA in human serum are scarce. Here, we assessed the potential use of the retrotransposon sequences SjR2 and SjCHGCS19 from S. japonicum, S. mekongi and S. malayensis for the diagnosis of Asian Schistosoma infections. Based on available S. japonicum sequences and newly provided S. mekongi and S. malayensis sequences, hybridization probe-based real-time PCRs targeting SjR2 and SjCHGCS19 of the S. japonicum complex were designed both as consensus primer assays as well as multi-primer assays for the coverage of multiple variants of the target sequences. The assays were established using plasmids and S. mekongi DNA. While the consensus primer assays failed to detect S. mekongi DNA in human serum samples, the multi-primer assays showed positive or borderline positive results but only in 9.8% (6/61) of serum samples from patients with confirmed S. mekongi infections. Some cross-reactions with samples positive for S. mansoni or S. haematobium were observed but with the SjCHGCS19-PCR only. In spite of the low sensitivity, the presented experience may guide future evaluations of S. japonicum-complex-specific PCRs from human serum. Full article
(This article belongs to the Special Issue Molecular Diagnostics for Infectious Diseases)
15 pages, 2078 KiB  
Article
Identification of Low Molecular Weight Proteins and Peptides from Schistosoma mekongi Worm, Egg and Infected Mouse Sera
by Tipparat Thiangtrongjit, Nattapon Simanon, Poom Adisakwattana, Yanin Limpanont, Phiraphol Chusongsang, Yupa Chusongsang and Onrapak Reamtong
Biomolecules 2021, 11(4), 559; https://doi.org/10.3390/biom11040559 - 11 Apr 2021
Cited by 1 | Viewed by 2839
Abstract
Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of [...] Read more.
Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development. Full article
Show Figures

Figure 1

25 pages, 5254 KiB  
Article
Effect of Praziquantel on Schistosoma mekongi Proteome and Phosphoproteome
by Peerut Chienwichai, Sumate Ampawong, Poom Adisakwattana, Tipparat Thiangtrongjit, Yanin Limpanont, Phiraphol Chusongsang, Yupa Chusongsang and Onrapak Reamtong
Pathogens 2020, 9(6), 417; https://doi.org/10.3390/pathogens9060417 - 27 May 2020
Cited by 13 | Viewed by 3770
Abstract
Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. [...] Read more.
Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. mekongi after PZQ treatment for elucidating its action. Furthermore, key kinases related to PZQ effects were predicted to identify alternative targets for novel drug development. Proteomes of S. mekongi were profiled after PZQ treatment at half maximal inhibitory concentration and compared with untreated worms. A total of 144 proteins were differentially expressed after treatment. In parallel, immunohistochemistry indicated a reduction of phosphorylation, with 43 phosphoproteins showing reduced phosphorylation, as identified by phosphoproteomic approach. Pathway analysis of mass spectrometric data showed that calcium homeostasis, worm antigen, and oxidative stress pathways were influenced by PZQ treatment. Interestingly, two novel mechanisms related to protein folding and proteolysis through endoplasmic reticulum-associated degradation pathways were indicated as a parasiticidal mechanism of PZQ. According to kinase–substrate predictions with bioinformatic tools, Src kinase was highlighted as the major kinase related to the alteration of phosphorylation by PZQ. Interfering with these pathways or applying Src kinase inhibitors could be alternative approaches for further antischistosomal drug development. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

29 pages, 5256 KiB  
Review
Asian Schistosomiasis: Current Status and Prospects for Control Leading to Elimination
by Catherine A. Gordon, Johanna Kurscheid, Gail M. Williams, Archie C. A. Clements, Yuesheng Li, Xiao-Nong Zhou, Jürg Utzinger, Donald P. McManus and Darren J. Gray
Trop. Med. Infect. Dis. 2019, 4(1), 40; https://doi.org/10.3390/tropicalmed4010040 - 26 Feb 2019
Cited by 110 | Viewed by 20148
Abstract
Schistosomiasis is an infectious disease caused by helminth parasites of the genus Schistosoma. Worldwide, an estimated 250 million people are infected with these parasites with the majority of cases occurring in sub-Saharan Africa. Within Asia, three species of Schistosoma cause disease. Schistosoma japonicum [...] Read more.
Schistosomiasis is an infectious disease caused by helminth parasites of the genus Schistosoma. Worldwide, an estimated 250 million people are infected with these parasites with the majority of cases occurring in sub-Saharan Africa. Within Asia, three species of Schistosoma cause disease. Schistosoma japonicum is the most prevalent, followed by S. mekongi and S. malayensis. All three species are zoonotic, which causes concern for their control, as successful elimination not only requires management of the human definitive host, but also the animal reservoir hosts. With regard to Asian schistosomiasis, most of the published research has focused on S. japonicum with comparatively little attention paid to S. mekongi and even less focus on S. malayensis. In this review, we examine the three Asian schistosomes and their current status in their endemic countries: Cambodia, Lao People’s Democratic Republic, Myanmar, and Thailand (S. mekongi); Malaysia (S. malayensis); and Indonesia, People’s Republic of China, and the Philippines (S. japonicum). Prospects for control that could potentially lead to elimination are highlighted as these can inform researchers and disease control managers in other schistosomiasis-endemic areas, particularly in Africa and the Americas. Full article
(This article belongs to the Special Issue Prospects for Schistosomiasis Elimination)
Show Figures

Figure 1

15 pages, 1372 KiB  
Review
Elimination of Schistosomiasis Mekongi from Endemic Areas in Cambodia and the Lao People’s Democratic Republic: Current Status and Plans
by Virak Khieu, Somphou Sayasone, Sinuon Muth, Masashi Kirinoki, Sakhone Laymanivong, Hiroshi Ohmae, Rekol Huy, Thipphavanh Chanthapaseuth, Aya Yajima, Rattanaxay Phetsouvanh, Robert Bergquist and Peter Odermatt
Trop. Med. Infect. Dis. 2019, 4(1), 30; https://doi.org/10.3390/tropicalmed4010030 - 7 Feb 2019
Cited by 39 | Viewed by 6459
Abstract
The areas endemic for schistosomiasis in the Lao People’s Democratic Republic and in Cambodia were first reported 50 and 60 years ago, respectively. However, the causative parasite Schistosoma mekongi was not recognized as a separate species until 1978. The infection is distributed along [...] Read more.
The areas endemic for schistosomiasis in the Lao People’s Democratic Republic and in Cambodia were first reported 50 and 60 years ago, respectively. However, the causative parasite Schistosoma mekongi was not recognized as a separate species until 1978. The infection is distributed along a limited part of the Mekong River, regulated by the focal distribution of the intermediate snail host Neotricula aperta. Although more sensitive diagnostics imply a higher figure, the current use of stool examinations suggests that only about 1500 people are presently infected. This well-characterized setting should offer an exemplary potential for the elimination of the disease from its endemic areas; yet, the local topography, reservoir animals, and a dearth of safe water sources make transmission control a challenge. Control activities based on mass drug administration resulted in strong advances, and prevalence was reduced to less than 5% according to stool microscopy. Even so, transmission continues unabated, and the true number of infected people could be as much as 10 times higher than reported. On-going control activities are discussed together with plans for the future. Full article
(This article belongs to the Special Issue Prospects for Schistosomiasis Elimination)
Show Figures

Figure 1

Back to TopTop