Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art
Abstract
1. Introduction
2. Seismic Response of Structural Systems
2.1. General Issues
2.2. Current Codifications
2.3. Ongoing Research
3. Seismic Response of Non-Structural Architectural Components
3.1. General Issues
3.2. Current Codifications
3.3. Ongoing Research
4. Conclusions and Future Developments
Author Contributions
Funding
Conflicts of Interest
References
- Montuori, R.; Gabbianelli, G.; Nastri, E.; Simoncelli, M. Rigid plastic analysis for the seismic performance evaluation of steel storage racks. Steel Compos. Struct. 2019, 32, 1–19. [Google Scholar]
- Piluso, V.; Pisapia, A.; Nastri, E.; Montuori, R. Ultimate resistance and rotation capacity of low yielding high hardening aluminium alloy beams under non-uniform bending. Thin Walled Struct. 2019, 135, 123–136. [Google Scholar] [CrossRef]
- Castaldo, P.; Nastri, E.; Piluso, V. Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis. Thin Walled Struct. 2017, 115, 129–141. [Google Scholar] [CrossRef]
- Castaldo, P.; Nastri, E.; Piluso, V. FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams. Compos. Part B Eng. 2017, 115, 124–137. [Google Scholar] [CrossRef]
- Fiorino, L.; Iuorio, O.; Macillo, V.; Terracciano, M.T.; Pali, T.; Landolfo, R. Seismic design method for CFS diagonal strap-braced stud walls: Experimental validation. J. Struct. Eng. 2016, 142, 04015154. [Google Scholar] [CrossRef]
- Macillo, V.; Fiorino, L.; Landolfo, R. Seismic response of CFS shear walls sheathed with nailed gypsum panels: Experimental tests. Thin Walled Struct. 2017, 120, 161–171. [Google Scholar] [CrossRef]
- Krawinkler, H.; Francisco, P.; Ibarra, L.; Ayoub, A.; Medina, R. Development of a Testing Protocol for Woodframe Structures; Publication No. W-02; CUREE: Richmond, CA, USA, 2001. [Google Scholar]
- CEN. EN 1993-1-3 Eurocode 3: Design of Steel Structures—Part 1–3: General Rules—Supplementary Rules for Cold-Formed Members and Sheeting; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- AISI. S100-16 North American Specification for the Design of Cold-Formed Steel Structural Members; American Iron and Steel Institute (AISI): Washington, DC, USA, 2016; ISBN 9781771391535. [Google Scholar]
- Australia/New Zealand Standards. AUS/NZS 4600. Cold-Formed Steel Structures; Australia/New Zealand Standards: Sydney, NSW, Australia, 2005. [Google Scholar]
- AISI. S400-15 North American Standard for Seismic Design of Cold Formed Steel Structural Systems; American Iron and Steel Institute (AISI): Washington, DC, USA, 2015. [Google Scholar]
- SEI/ASCE. ASCE 7-10 Minimim Design Loads for Buildings and other Structures; American Society of Civil Engineers: Reston, VA, USA, 2010; ISBN 9780784410851. [Google Scholar]
- NRCC. National Building Code of Canada; National Research Council of Canada (NRCC): Ottawa, ON, Canada, 2005.
- CEN. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Liu, P.; Peterman, K.D.; Schafer, B.W. Impact of construction details on OSB-sheathed cold-formed steel framed shear walls. J. Constr. Steel Res. 2014, 101, 114–123. [Google Scholar] [CrossRef]
- Yu, C. Shear resistance of cold-formed steel framed shear walls with 0.686 mm, 0.762 mm, and 0.838 mm steel sheet sheathing. Eng. Struct. 2010, 32, 1522–1529. [Google Scholar] [CrossRef]
- Uang, C.-M.; Sato, A.; Hong, J.-K.; Wood, K. Cyclic testing and modeling of cold-formed steel special bolted moment frame connections. J. Struct. Eng. 2010, 136, 953–960. [Google Scholar] [CrossRef]
- Adham, S.A.; Avanessian, V.; Hart, G.C.; Anderson, R.W.; Elmlinger, J.; Gregory, J. Shear wall resistance of lightgage steel stud wall systems. Earthq. Spectra 1990, 6, 1–14. [Google Scholar] [CrossRef]
- Gad, E.F.; Duffield, C.F.; Hutchinson, G.L.; Mansell, D.S.; Stark, G. Lateral performance of cold-formed steel-framed domestic structures. Eng. Struct. 1999, 21, 83–95. [Google Scholar] [CrossRef]
- Schafer, B.W.; Ayhan, D.; Leng, J.; Liu, P.; Padilla-Llano, D.; Peterman, K.D.; Stehman, M.; Buonopane, S.G.; Eatherton, M.; Madsen, R.; et al. Seismic response and engineering of cold-formed steel framed buildings. Structures 2016, 8, 197–212. [Google Scholar] [CrossRef]
- Hoehler, M.S.; Smith, C.M.; Hutchinson, T.C.; Wang, X.; Meacham, B.J.; Kamath, P. Behavior of steel-sheathed shear walls subjected to seismic and fire loads. Fire Saf. J. 2017, 91, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, L.; Macillo, V.; Landolfo, R. Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building. Eng. Struct. 2017, 151, 633–647. [Google Scholar] [CrossRef]
- Fiorino, L.; Bucciero, B.; Landolfo, R. Shake table tests of three storey cold-formed steel structures with strap-braced walls. Bull. Earthq. Eng. 2019, 17, 4217–4275. [Google Scholar] [CrossRef]
- Peck, Q.; Rogers, N.; Serrette, R. Cold-formed steel framed gypsum shear walls: In-plane response. J. Struct. Eng. 2012, 138, 932–941. [Google Scholar] [CrossRef]
- Velchev, K.; Comeau, G.; Balh, N.; Rogers, C.A. Evaluation of the AISI S213 seismic design procedures through testing of strap braced cold-formed steel walls. Thin Walled Struct. 2010, 48, 846–856. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sangree, R.H.; Velchev, K.; Comeau, G.; Balh, N.; Rogers, C.A.; Schafer, B.W. Seismic capacity-based design of narrow strap-braced cold-formed steel walls. J. Constr. Steel Res. 2015, 115, 81–91. [Google Scholar] [CrossRef]
- Mohebbi, S.; Mirghaderi, S.R.; Farahbod, F.; Bagheri Sabbagh, A.; Torabian, S. Experiments on seismic behaviour of steel sheathed cold-formed steel shear walls cladded by gypsum and fiber cement boards. Thin Walled Struct. 2016, 104, 238–247. [Google Scholar] [CrossRef]
- Accorti, M.; Baldassino, N.; Zandonini, R.; Scavazza, F.; Rogers, C.A. Response of CFS Sheathed Shear Walls. Structures 2016, 7, 100–112. [Google Scholar] [CrossRef]
- Fiorino, L.; Terracciano, M.T.; Landolfo, R. Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls. J. Constr. Steel Res. 2016, 127, 92–107. [Google Scholar] [CrossRef]
- Terracciano, M.T.; Vincenzo, M.; Pali, T.; Bucciero, B.; Luigi, F.; Landolfo, R. Seismic design and performance of low energy dissipative CFS strap-braced stud walls. Bull. Earthq. Eng. 2018, 17, 1075–1098. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Jia, H.; Zhao, M. Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides. Thin Walled Struct. 2015, 92, 146–159. [Google Scholar] [CrossRef]
- Wang, X.; Ye, J. Reversed cyclic performance of cold-formed steel shear walls with reinforced end studs. J. Constr. Steel Res. 2015, 113, 28–42. [Google Scholar] [CrossRef]
- Esmaeili Niari, S.; Rafezy, B.; Abedi, K. Seismic behavior of steel sheathed cold-formed steel shear wall: Experimental investigation and numerical modeling. Thin Walled Struct. 2015, 96, 337–347. [Google Scholar] [CrossRef]
- Moghimi, H.; Ronagh, H.R. Performance of light-gauge cold-formed steel strap-braced stud walls subjected to cyclic loading. Eng. Struct. 2009, 31, 69–83. [Google Scholar] [CrossRef]
- Latreille, P.; Nikolaidou, V.; Rogers, C.A.; Lignos, D.G. Characterization of cold-formed steel framed diaphragm response under in-plane loading and influence of non-structural gypsum panels. In Proceedings of the International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO, USA, 3–4 November 2010; p. 1. [Google Scholar]
- Nikolaidou, V.; Latreille, P.; Rogers, C.A.; Lignos, D.G. Characterization of cold-formed steel framed/woodsheathed floor and roof diaphragm structures. In Proceedings of the 16th World Conference on Earthquake Engineering, 16WCEE, Santiago, Chile, 9–13 January 2017; p. 452. [Google Scholar]
- Baldassino, N.; Bernardi, M.; Zandonini, R.; Zordan, M. Study of cold-formed steel floor systems under shear loadings. In Proceedings of the Eighth International Conference on Thin-Walled Structures (ICTWS 2018), Lisbon, Portugal, 24–27 July 2018. [Google Scholar]
- Vieira, L.C.M.; Schafer, B.W. Lateral stiffness and strength of sheathing braced cold-formed steel stud walls. Eng. Struct. 2012, 37, 205–213. [Google Scholar] [CrossRef]
- Peterman, K.D.; Nakata, N.; Schafer, B.W. Hysteretic characterization of cold-formed steel stud-to-sheathing connections. J. Constr. Steel Res. 2014, 101, 254–264. [Google Scholar] [CrossRef]
- Swensen, S.; Deierlein, G.G.; Miranda, E. Behavior of screw and adhesive connections to gypsum wallboard in wood and cold-formed steel-framed wallettes. J. Struct. Eng. 2016, 142, E4015002. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Zhao, M. Experimental study on shear behavior of screw connections in CFS sheathing. J. Constr. Steel Res. 2016, 121, 1–12. [Google Scholar] [CrossRef]
- Fiorino, L.; Macillo, V.; Landolfo, R. Experimental characterization of quick mechanical connecting systems for cold-formed steel structures. Adv. Struct. Eng. 2017, 20, 1098–1110. [Google Scholar] [CrossRef]
- Fiorino, L.; Pali, T.; Bucciero, B.; Macillo, V.; Teresa Terracciano, M.; Landolfo, R. Experimental study on screwed connections for sheathed CFS structures with gypsum or cement based panels. Thin Walled Struct. 2017, 116, 234–249. [Google Scholar] [CrossRef]
- Serrette, R.; Nolan, D. Wood structural panel to cold-formed steel shear connections with pneumatically driven knurled steel pins. Pract. Period. Struct. Des. Constr. 2017, 22, 04017002. [Google Scholar] [CrossRef]
- Shamim, I.; Rogers, C.A. Steel sheathed/CFS framed shear walls under dynamic loading: Numerical modelling and calibration. Thin Walled Struct. 2013, 71, 57–71. [Google Scholar] [CrossRef]
- Nithyadharan, M.; Kalyanaraman, V. Modelling hysteretic behaviour of cold-formed steel wall panels. Eng. Struct. 2013, 46, 643–652. [Google Scholar] [CrossRef]
- Kechidi, S.; Bourahla, N. Deteriorating hysteresis model for cold-formed steel shear wall panel based on its physical and mechanical characteristics. Thin Walled Struct. 2016, 98, 421–430. [Google Scholar] [CrossRef]
- Fiorino, L.; Shakeel, S.; Macillo, V.; Landolfo, R. Seismic response of CFS shear walls sheathed with nailed gypsum panels: Numerical modelling. Thin Walled Struct. 2018, 122, 359–370. [Google Scholar] [CrossRef]
- Macillo, V.; Shakeel, S.; Fiorino, L.; Landolfo, R. Development and calibration of a hysteretic model for CFS strap braced stud walls. Adv. Steel Constr. 2018, 14, 336–359. [Google Scholar]
- Fiorino, L.; Shakeel, S.; Macillo, V.; Landolfo, R. Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695. J. Constr. Steel Res. 2017, 138, 324–339. [Google Scholar] [CrossRef]
- Shakeel, S.; Landolfo, R.; Fiorino, L. Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695 for Eurocodes. Thin Walled Struct. 2019, 141, 194–207. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Xu, L. Simplified nonlinear finite element analysis of buildings with CFS shear wall panels. J. Constr. Steel Res. 2011, 67, 565–575. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.; Shi, Y.; Zhou, T.; Liu, Y. Experiment and FE analysis on shear resistance of cold-formed steel stud assembled wall in residential structure. Adv. Steel Constr. 2010, 6, 914–925. [Google Scholar]
- Hatami, S.; Rahmani, A.; Parvaneh, A.; Ronagh, H.R. A parametric study on seismic characteristics of cold-formed steel shear walls by finite element modeling. Adv. Steel Constr. 2014, 10, 53–71. [Google Scholar]
- Buonopane, S.G.; Bian, G.; Tun, T.H.; Schafer, B.W. Computationally efficient fastener-based models of cold-formed steel shear walls with wood sheathing. J. Constr. Steel Res. 2015, 110, 137–148. [Google Scholar] [CrossRef]
- Telue, Y.; Mahendran, M. Behaviour of cold-formed steel wall frames lined with plasterboard. J. Constr. Steel Res. 2001, 57, 435–452. [Google Scholar] [CrossRef]
- ASCE. 41-13 Seismic Evaluation and Upgrade of Existing Buildings; American Society of Civil Engineers: Reston, VA, USA, 2013. [Google Scholar]
- Jenkins, C.; Soroushian, S.; Rahmanishamsi, E.; Maragakis, E. Experimental fragility analysis of cold-formed steel-framed partition wall systems. In Proceedings of the Structures Congress 2015, Portland, OR, USA, 23–25 April 2015; pp. 1760–1773. [Google Scholar]
- Wang, X.; Pantoli, E.; Hutchinson, T.C.; Restrepo, J.I.; Wood, R.L.; Hoehler, M.S.; Grzesik, P.; Sesma, F.H. Seismic performance of cold-formed steel wall systems in a full-scale building. J. Struct. Eng. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- Magliulo, G.; Petrone, C.; Capozzi, V.; Maddaloni, G.; Lopez, P.; Manfredi, G. Seismic performance evaluation of plasterboard partitions via shake table tests. Bull. Earthq. Eng. 2014, 12, 1657–1677. [Google Scholar] [CrossRef]
- Fiorino, L.; Bucciero, B.; Landolfo, R. Evaluation of seismic dynamic behaviour of drywall partitions, façades and ceilings through shake table testing. Eng. Struct. 2019, 180, 103–123. [Google Scholar] [CrossRef]
- Badillo-Almaraz, H.; Whittaker, A.S.; Reinhorn, A.M. Seismic fragility of suspended ceiling systems. Earthq. Spectra 2007, 23, 21–40. [Google Scholar] [CrossRef]
- Jenkins, C.; Soroushian, S.; Rahmanishamsi, E.; Maragakis, E.M. Experimental fragility analysis of cold-formed steel-framed partition wall systems. Thin Walled Struct. 2016, 103, 115–127. [Google Scholar] [CrossRef]
- Restrepo, J.I.; Bersofsky, A.M. Performance characteristics of light gage steel stud partition walls. Thin Walled Struct. 2011, 49, 317–324. [Google Scholar] [CrossRef]
- Retamales, R.; Davies, R.; Mosqueda, G.; Filiatrault, A. Experimental seismic fragility of cold-formed steel framed gypsum partition walls. J. Struct. Eng. 2013, 139, 1285–1293. [Google Scholar] [CrossRef]
- Tasligedik, A.S.; Pampanin, S.; Palermo, A. Low damage seismic solutions for non-structural drywall partitions. Bull. Earthq. Eng. 2015, 13, 1029–1050. [Google Scholar] [CrossRef]
- Petrone, C.; Magliulo, G.; Lopez, P.; Manfredi, G. Seismic fragility of plasterboard partitions via in-plane quasi-static tests. Earthq. Eng. Struct. Dyn. 2015, 44, 2589–2606. [Google Scholar] [CrossRef]
- Pali, T.; Macillo, V.; Terracciano, M.T.; Buccieros, B.; Fiorino, L.; Landolfo, R. In-plane quasi-static cyclic tests of nonstructural lightweight steel drywall partitions for seismic performance evaluation. Earthq. Eng. Struct. Dyn. 2018, 47, 1566–1588. [Google Scholar] [CrossRef]
- Fiorino, L.; Pali, T.; Landolfo, R. Out-of-plane seismic design by testing of non-structural lightweight steel drywall partition walls. Thin Walled Struct. 2018, 130, 213–230. [Google Scholar] [CrossRef]
Lateral Force Resisting System | ASCE 7 | NBCC |
---|---|---|
CFS light-frame shear walls sheathed with wood structural panels | 6.5 to 7.0 | 4.25 |
CFS light-frame shear walls with steel sheet sheathing | 6.5 to 7.0 | 2.6 |
CFS light-frame strap braced wall systems | 4.0 | 2.47 |
CFS special bolted moment resisting frames; | 3.5 | - |
CFS light-frame shear walls with gypsum sheathing on one side and wood-based sheathing on the other side | - | 2.55 |
CFS light-frame shear walls with fiberboard or gypsum sheathing. | 2.0 to 2.5 | - |
Conventional construction CFS light-frame strap braced wall systems | - | 1.56 |
Non-Structural Components | Category |
---|---|
Drywall partitions and façades (in-plane response) Suspended discontinuous ceilings | (1) deformation-sensitive |
Drywall partitions and façades (out-of-plane response) Suspended continuous drywall ceilings | (2) acceleration-sensitive |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, G.; De Martino, A. Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings 2019, 9, 228. https://doi.org/10.3390/buildings9110228
Di Lorenzo G, De Martino A. Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings. 2019; 9(11):228. https://doi.org/10.3390/buildings9110228
Chicago/Turabian StyleDi Lorenzo, Gianmaria, and Attilio De Martino. 2019. "Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art" Buildings 9, no. 11: 228. https://doi.org/10.3390/buildings9110228
APA StyleDi Lorenzo, G., & De Martino, A. (2019). Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings, 9(11), 228. https://doi.org/10.3390/buildings9110228