Abstract
This research focuses on characterizing typical displacement patterns in concentrically braced frame (CBF) systems for use in the direct displacement-based seismic design (DDBD) methodology. Using the finite-element program SeismoStruct, two-dimensional models were developed for nonlinear time–history analysis (NLTHA), employing scaled real accelerograms, conventional gravity loads, and detailed numerical models. Thirty varied CBF configurations with different numbers of storeys, spans, and bracing types were evaluated. It was found that the conventional displacement profiles, commonly used for moment-resisting frames, do not accurately represent the actual behavior of CBFs in the inelastic range. Therefore, fitted equations were developed and validated to accurately represent the actual displacements of CBF systems, accounting for factors such as the fundamental vibration period and equivalent system damping. These improvements enable the seismic design optimization, advanced displacement and drift control, and strengthen structural safety and performance in high-seismicity zones in the region. This contribution is relevant to performance-based engineering, facilitating a plausible update to regulations and best practices for seismic-resistant design.