You are currently on the new version of our website. Access the old version .
BuildingsBuildings
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

17 January 2026

Research Progress and Frontier Trends in Generative AI in Architectural Design

,
,
,
and
1
School of Art and Design, Guangdong University of Finance and Economics, Guangzhou 510320, China
2
School of Humanities and Arts, Heyuan Polytechnic, Heyuan 517000, China
*
Author to whom correspondence should be addressed.
Buildings2026, 16(2), 388;https://doi.org/10.3390/buildings16020388 
(registering DOI)
This article belongs to the Special Issue Practice and Application of Artificial Intelligence in Built Environment

Abstract

In recent years, with the rapid advancement of science and technology, generative artificial intelligence has increasingly entered the public eye. Primarily through intelligent algorithms that simulate human logic and integrate vast amounts of network data, it provides designers with solutions that transcend traditional thinking, enhancing both design efficiency and quality. Compared to traditional design methods reliant on human experience, generative design possesses robust data processing capabilities and the ability to refine design proposals, significantly reducing preliminary design time. This study employs the CiteSpace visualization tool to systematically organize and conduct knowledge map analysis of research literature related to generative AI in architectural design within the Web of Science database from 2005 to 2025. Findings reveal the following: (1) International research exhibits a trend toward interdisciplinary convergence. In recent years, research in this field has grown rapidly across nations, with continuously increasing academic influence; (2) Research primarily focuses on technological applications within architectural design, aiming to drive innovation and development by providing superior, more efficient technical support; (3) Generative AI in architectural design has emerged as a prominent international research focus, reflecting a shift from isolated design to industry-wide integration; (4) Generative AI has become a core global architectural design topic, with future research advancing toward full-process intelligent collaboration. High-quality knowledge graphs tailored for the architecture industry should be constructed to overcome data silos. Concurrently, a multidimensional evaluation system for generative quality must be established to deepen the symbiotic design paradigm of human–machine collaboration. This significantly enhances efficiency while reducing the iterative nature of traditional methods. This study aims to provide empirical support for theoretical and practical advancements, offering crucial references for practitioners to identify business opportunities and policymakers to optimize relevant strategies.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.