You are currently viewing a new version of our website. To view the old version click .
Buildings
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

22 December 2025

Effects of Ca/Si and Si/Al Ratios on the Wood Biomass Ash-Based Alkali-Activated Materials with Pozzolanic Additives

,
and
Laboratory of Concrete Technology, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenų Str. 28, LT-08217 Vilnius, Lithuania
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Sustainable Concrete: Research on Waste Utilization and Performance Optimization

Abstract

Wood biomass ash (WBA) is a by-product from biofuel energy plants. The disposal of this waste is connected with numerous environmental concerns. A more sustainable choice is to recycle it as a raw material for building and construction materials. However, due to its unstable characteristics, its application in alkali-activated materials (AAM) poses a challenge. One issue is the development of the mechanical properties. To improve them, pozzolanic additives, including coal fly ash (CFA), metakaolin (MK), and natural zeolite (NZ), were added at replacement ratios of 10–40%. Calcium hydroxide, sodium hydroxide, and sodium silicate were used together as ternary activators. The samples were cured at 60 °C for the first 24 h and for the remaining 27 days at room temperature. Mechanical behavior, water absorption, and chemical compositions were examined. The results obtained from XRF were compared with the calculation results of the chemical compositions based on the mix design and oxide compositions of the raw materials. The results show that the respective optimum replacement ratios were 30% CFA, 20% MK, and 20% NZ, with the highest compressive strength corresponding to 22.71, 20.53, and 24.33 MPa, and the highest flexural strength of 4.49, 4.32, and 4.21 MPa. NZ was the most effective in AAM, due to the highest Si/Al ratio in the Ca-rich ambient. Then, CFA contributed less, and MK was the least efficient when used in combination with WBA in AAM. The reduction of Ca/Si ratios in the AAM caused by the pozzolanic additives favors the formation of a binder system made of different hydrates and facilitates the strength enhancement when the Ca/Si ratio is lower than 0.35.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.