Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes
Abstract
1. Introduction
2. Materials and Methods
2.1. 6 February 2023 Kahramanmaraş Earthquakes and the East Anatolian Fault System
2.2. Structural Damages in RC Columns
3. Results
3.1. Numerical Analysis
3.2. Strengthening Columns with FRP
4. Conclusions and Discussion
- Transverse reinforcement diameter;
- Transverse reinforcement spacing;
- The use of different types of reinforcement together;
- Preference for plain reinforcement;
- Low-strength concrete;
- Corrosion;
- Bend angle of transverse reinforcements;
- Poor reinforcement workmanship;
- Insufficient concrete cover thickness;
- Inadequate anchorage between transverse and longitudinal reinforcements;
- Short column effect;
- Impact effect;
- Lack of special seismic stirrups (ties) usage.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papatheodorou, K.; Theodoulidis, N.; Klimis, N.; Zulfikar, C.; Vintila, D.; Cardanet, V.; Kirtas, E.; Toma-Danila, D.; Margaris, B.; Fahjan, Y.; et al. Rapid earthquake damage assessment and education to improve earthquake response efficiency and community resilience. Sustainability 2023, 15, 16603. [Google Scholar] [CrossRef]
- Shafapourtehrany, M.; Batur, M.; Shabani, F.; Pradhan, B.; Kalantar, B.; Özener, H. A comprehensive review of geospatial technology applications in earthquake preparedness, emergency management, and damage assessment. Remote Sens. 2023, 15, 1939. [Google Scholar] [CrossRef]
- Crowley, H.; Despotaki, V.; Silva, V.; Dabbeek, J.; Romão, X.; Pereira, N.; Castro, J.M.; Daniell, J.; Veliu, E.; Bilgin, H.; et al. Model of seismic design lateral force levels for the existing reinforced concrete European building stock. Bull. Earthq. Eng. 2021, 19, 2839–2865. [Google Scholar] [CrossRef]
- Ademović, N.; Toholj, M.; Radonić, D.; Casarin, F.; Komesar, S.; Ugarković, K. Post-earthquake assessment and strengthening of a cultural-heritage residential masonry building after the 2020 Zagreb earthquake. Buildings 2022, 12, 2024. [Google Scholar] [CrossRef]
- Alpyürür, M.; Ulutaş, H. Comparison of performance analysis results with developed site-specific response spectra and Turkish seismic design code: A case study from the SW Türkiye region. Buildings 2024, 14, 1233. [Google Scholar] [CrossRef]
- Duvnjak, I.; Ereiz, S.; Smrkić, M.F.; Damjanović, D. Post-Earthquake dynamic performance of intact masonry building based on finite element model updating. Appl. Sci. 2023, 13, 9042. [Google Scholar] [CrossRef]
- Valente, M. Seismic performance assessment of a non-ductile RC building retrofitted by steel bracing or fiber-reinforced polymers. Appl. Mech. Mater. 2012, 234, 84–89. [Google Scholar] [CrossRef]
- Işık, M.F.; Işık, E.; Bülbül, M.A. Application of iOS/Android based assessment and monitoring system for building inventory under seismic impact. Gradjevinar 2018, 70, 1043–1056. [Google Scholar] [CrossRef]
- Valente, M. Earthquake response and damage patterns assessment of two historical masonry churches with bell tower. Eng. Fail. Anal. 2023, 151, 107418. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; İzol, R.; Büyüksaraç, A.; Bilgin, H.; Harirchian, E.; Arkan, E. Field reconnaissance and earthquake vulnerability of the RC Buildings in Adıyaman during 2023 Türkiye earthquakes. Appl. Sci. 2024, 14, 2860. [Google Scholar] [CrossRef]
- İnce, O. Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023. Eng. Fail. Anal. 2024, 156, 107799. [Google Scholar] [CrossRef]
- Avğın, S.; Köse, M.M.; Özbek, A. Damage assessment of structural and geotechnical damages in Kahramanmaraş during the February 6, 2023 earthquakes. Eng. Sci. Technol. Int. J. 2024, 57, 101811. [Google Scholar] [CrossRef]
- Yön, B.; Dedeoğlu, İ.Ö.; Yetkin, M.; Erkek, H.; Calayır, Y. Evaluation of the seismic response of reinforced concrete buildings in the light of lessons learned from the February 6, 2023, Kahramanmaraş, Türkiye earthquake sequences. Nat. Hazards 2024, 121, 873–909. [Google Scholar] [CrossRef]
- Sezgin, S.K.; Sakcalı, G.B.; Özen, S.; Yıldırım, E.; Avcı, E.; Bayhan, B.; Çağlar, N. Reconnaissance report on damage caused by the February 6, 2023, Kahramanmaraş Earthquakes in reinforced-concrete structures. J. Build. Eng. 2024, 89, 109200. [Google Scholar] [CrossRef]
- Ivanov, M.L.; Chow, W.K. Structural damage observed in reinforced concrete buildings in Adiyaman during the 2023 Turkiye Kahramanmaras earthquakes. Structures 2023, 58, 105578. [Google Scholar] [CrossRef]
- Ozturk, M.; Arslan, M.H.; Korkmaz, H.H. Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Eng. Fail. Anal. 2023, 153, 107521. [Google Scholar] [CrossRef]
- Demir, A.; Celebi, E.; Ozturk, H.; Ozcan, Z.; Ozocak, A.; Bol, E.; Sert, S.; Sahin, F.Z.; Arslan, E.; Yaman, Z.D.; et al. Destructive impact of successive high magnitude earthquakes occurred in Türkiye’s Kahramanmaraş on February 6, 2023. Bull. Earthq. Eng. 2024, 23, 893–919. [Google Scholar] [CrossRef]
- Binici, B.; Yakut, A.; Kadas, K.; Demirel, O.; Akpinar, U.; Canbolat, A.; Yurtseven, F.; Oztaskin, O.; Aktas, S.; Canbay, E. Performance of RC buildings after Kahramanmaraş earthquakes: Lessons toward performance based design. Earthq. Eng. Eng. Vibr. 2023, 22, 883–894. [Google Scholar] [CrossRef]
- Vuran, E.; Serhatoğlu, C.; Timurağaoğlu, M.Ö.; Smyrou, E.; Bal, İ.E.; Livaoğlu, R. Damage observations of RC buildings from 2023 Kahramanmaraş earthquake sequence and discussion on the seismic code regulations. Bull. Earthq. Eng. 2024, 23, 1153–1182. [Google Scholar] [CrossRef]
- Mertol, H.C.; Tunç, G.; Akış, T.; Kantekin, Y.; Aydın, İ.C. Investigation of RC buildings after 6 February 2023, Kahramanmaraş, Türkiye earthquakes. Buildings 2023, 13, 1789. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Arslan, M.E.; Kahya, V.; Aslan, B.; Sezdirmez, T.; Dok, G.; Kirtel, O.; Öztürk, H.; Sunca, F.; Baltaci, A.; et al. Field observations and damage evaluation in reinforced concrete buildings after the february 6th, 2023, Kahramanmaras-Turkiye earthquakes. J. Earthq. Tsun. 2023, 17, 2350024. [Google Scholar] [CrossRef]
- Altunsu, E.; Güneş, O.; Öztürk, S.; Sorosh, S.; Sarı, A.; Beeson, S.T. Investigating the structural damage in Hatay province after Kahramanmaraş-Türkiye earthquake sequences. Eng. Fail. Anal. 2024, 157, 107857. [Google Scholar] [CrossRef]
- Yuzbasi, J. Post-Earthquake Damage assessment: Field observations and recent developments with recommendations from the Kahramanmaraş earthquakes in Türkiye on February 6th, 2023 (Pazarcık M7. 8 and Elbistan M7. 6). J. Earthq. Eng. 2024, 1–26. [Google Scholar] [CrossRef]
- Cetin, K.O.; Cuceoglu, F.; Ayhan, B.U.; Yildirim, S.; Aydin, S.; Demirdogen, S.; Er, Y.; Gurbuz, A.; Moss, R.E.S. Performance of hydraulic structures during 6 February 2023 Kahramanmaraş, Türkiye, earthquake sequence. Earthq. Spectra 2024, 40, 2231–2267. [Google Scholar] [CrossRef]
- Akar, F.; Işık, E.; Avcil, F.; Büyüksaraç, A.; Arkan, E.; İzol, R. Geotechnical and structural damages caused by the 2023 Kahramanmaraş Earthquakes in Gölbaşı (Adıyaman). Appl. Sci. 2024, 14, 2165. [Google Scholar] [CrossRef]
- Çelebi, E.; Aktas, M.; Çağlar, N.; Özocak, A.; Kutanis, M.; Mert, N.; Özcan, Z. October 23, 2011, Turkey/Van–Ercis earthquake: Structural damages in the residential buildings. Nat. Hazards 2013, 65, 2287–2310. [Google Scholar] [CrossRef]
- Tapan, M.; Comert, M.; Demir, C.; Sayan, Y.; Orakcal, K.; Ilki, A. Failures of structures during the October 23, 2011 Tabanlı (Van) and November 9, 2011 Edremit (Van) earthquakes in Turkey. Eng. Fail. Anal. 2013, 34, 606–628. [Google Scholar] [CrossRef]
- Zengin, B.; Aydin, F. The effect of material quality on buildings moderately and heavily damaged by the Kahramanmaraş Earthquakes. Appl. Sci. 2023, 13, 10668. [Google Scholar] [CrossRef]
- Yakut, A.; Sucuoğlu, H.; Binici, B.; Canbay, E.; Donmez, C.; İlki, A.; Caner, A.; Celik, O.C.; Ay, B.Ö. Performance of structures in İzmir after the Samos island earthquake. Bull. Earthq. Eng. 2021, 20, 7793–7818. [Google Scholar] [CrossRef]
- Doğangün, A.; Ural, A.; Sezen, H.; Güney, Y.; Fırat, F.K. The 2011 earthquake in Simav, Turkey and seismic damage to reinforced concrete buildings. Buildings 2013, 3, 173–190. [Google Scholar] [CrossRef]
- Yazgan, U.; Oyguç, R.; Ergüven, M.E.; Celep, Z. Seismic performance of buildings during 2011 Van earthquakes and rebuilding efforts. Earthq. Eng. Eng. Vibr. 2016, 15, 591–606. [Google Scholar] [CrossRef]
- Işık, E.; Hadzima-Nyarko, M.; Radu, D.; Bulajić, B. Study on effectiveness of regional risk prioritisation in reinforced concrete structures after earthquakes. Appl. Sci. 2024, 14, 6992. [Google Scholar] [CrossRef]
- Erbaş, Y.; Mercimek, Ö.; Anıl, Ö.; Çelik, A.; Akkaya, S.T.; Kocaman, İ.; Gürbüz, M. Design deficiencies, failure modes and recommendations for strengthening in reinforced concrete structures exposed to the February 6, 2023 Kahramanmaraş Earthquakes (Mw 7.7 and Mw 7.6). Nat. Hazards 2025, 121, 3153–3194. [Google Scholar] [CrossRef]
- Öser, C.; Sarğin, S.; Yildirim, A.K.; Korkmaz, G.; Altinok, E.; Kelesoglu, M.K. Geotechnical aspects and site investigations on Kahramanmaras earthquakes, February 06, 2023. Nat. Hazards 2025, 121, 5637–5668. [Google Scholar] [CrossRef]
- Kazaz, İ.; Avşar, Ö.; Dilsiz, A. Importance of building inspection on the seismic response of a severely damaged RC structure during the February 6, 2023 Kahramanmaraş earthquake sequence. Eng. Fail. Anal. 2024, 162, 108410. [Google Scholar] [CrossRef]
- Tozlu, İ.; Gürsoy, Ş.; Eren, E. Behavior of RC buildings with column discontinuity under the influence of vertical acceleration and near-fault effects. Earthq. Struct. 2025, 28, 237. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; Büyüksaraç, A.; Arkan, E. Comparative analysis of target displacements in RC Buildings for 2023 Türkiye earthquakes. Appl. Sci. 2025, 15, 4014. [Google Scholar] [CrossRef]
- Bassurucu, M.; Yildiz, O.; Kina, C. Seismic Performance Assessment of an RC Building Due to 2023 Türkiye Earthquakes: A Case Study in Adıyaman, Türkiye. Buildings 2025, 15, 521. [Google Scholar] [CrossRef]
- Gurbuz, T.; Cengiz, A. Structural damages during the February 06, 2023 Kahramanmaraş Earthquakes in Turkey. Soil Dyn. Earthq. Eng. 2025, 191, 109214. [Google Scholar] [CrossRef]
- Song, Q.; Ren, Y.; Zhou, B.; Yang, Y.; Liu, A.; Wen, R.; Lv, J.; Hui, Y. Deciphering the site effect as one of reasons causing severe building damages in Kahramanmaraş and Antakya in February 6 2023 earthquakes, Turkey. Environ. Earth Sci. 2025, 84, 205. [Google Scholar] [CrossRef]
- Gokceoglu, C. 6 February 2023 Kahramanmaraş—Türkiye earthquakes: A general overview, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, 48, 417–424. [Google Scholar] [CrossRef]
- Kocaman, İ. The effect of the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6) on historical masonry mosques and minarets. Eng. Fail. Anal. 2023, 149, 107225. [Google Scholar] [CrossRef]
- ACI CODE-318-19(22); Building Code Requirements for Structural Concrete and Commentary (Reapproved 2022). American Concrete Institute: Farmington Hills, MI, USA, 2019.
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Priestley, M.J.N.; Verma, R.; Xiao, Y. Seismic shear strength of reinforced concrete columns. J. Struct. Eng. ASCE 1994, 120, 2310–2329. [Google Scholar] [CrossRef]
- Pan, Z.; Li, B. Truss–Arch model for shear strength of shear-critical reinforced concrete columns. ASCE J. Struct. Eng. 2012, 139, 548–560. [Google Scholar] [CrossRef]
- Moretti, M.L.; Tassios, T.P. Behaviour and ductility of reinforced concrete short columns using global truss model. ACI Struct. J. 2006, 103, 319–327. [Google Scholar]
- Henkhaus, K.; Pujol, S.; Ramirez, J. Axial Failure of Reinforced Concrete Columns Damaged by Shear Reversals. J. Struct. Eng. 2013, 139, 1172–1180. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, J.; Ma, Y. Seismic shear strength and deformation of RC columns failed in flexural shear. M. Concr. Res. 2014, 66, 234–248. [Google Scholar] [CrossRef]
- Sezen, H.; Moehle, J.P. Shear strength model for lightly reinforced concrete columns. ASCE J. Struct. Eng. 2004, 130, 1692–1703. [Google Scholar] [CrossRef]
- Çolakoğlu, H.E. Betonarme kolonlarin deprem performansinda enine donati araliği etkisinin sayisal olarak incelenmesi. Adıyaman Üniversitesi Mühendislik Bilim. Derg. 2020, 7, 1–13. [Google Scholar]
- Atar, M.; İnce, O.; Taş, Ö.F.; Özmen, A.; Sayın, E. 6 Şubat 2023 Kahramanmaraş depremleri sonrasında betonarme kolonlarda enine donatı kusurlarının incelenmesi. Fırat Üniversitesi Mühendislik Bilim. Derg. 2024, 36, 221–230. [Google Scholar] [CrossRef]
- Taşkın, M.; Okay, F. Sargilama tipinin deprem yüklerine maruz kalan kolonlarin davranişina etkisinin sayisal olarak modellenmesi. Mühendislik Bilim. Ve Tasarım Derg. 2019, 7, 205–210. [Google Scholar] [CrossRef]
- Merter, O.; Uçar, T. Betonarme kesitlerin doğrusal elastik ötesi davranişinda tüketilen enerjiye boyuna donati oraninin, enine donati araliğinin ve eksenel yükün etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2015, 4, 21–39. [Google Scholar] [CrossRef]
- İnel, M.; Bilgin, H.; Özmen, H.B. Orta yükseklikteki betonarme binalarin deprem performanslarinin afet yönetmeliğine göre tayini. Pamukkale Üniversitesi Mühendislik Bilim. Derg. 2007, 13, 81–89. [Google Scholar]
- Işık, E. Investigation of the contribution of the reinforcement tie to the seismic behavior of reinforced-concrete columns. Bitlis Eren University, J. Sci. Techn. 2022, 12, 21–26. [Google Scholar] [CrossRef]
- Pawlak, A.M.; Górny, T.; Dopierała, Ł.; Paczos, P. The use of CFRP for structural reinforcement—Literature review. Metals 2022, 12, 1470. [Google Scholar] [CrossRef]
- Jahami, A.; Issa, C.A. An updated review on the effect of CFRP on flexural performance of reinforced concrete beams. Int. J. Concr. Struct. Mater. 2024, 18, 14. [Google Scholar] [CrossRef]
- Hou, W.; Li, Z.Q.; Gao, W.Y.; Zheng, P.D.; Guo, Z.X. Flexural behavior of RC beams strengthened with BFRP bars-reinforced ECC matrix. Compos. Struct. 2020, 241, 112092. [Google Scholar] [CrossRef]
- Emara, M.; El-Zohairy, A.; Fekry, M.; Husain, M. Effect of using ECC Layer on the flexural performance of RC beams previously strengthened with EB CFRP laminates. Multidiscip. Digit. Publ. Inst. 2022, 14, 16990. [Google Scholar] [CrossRef]
- Gamino, A.L.; Sousa, J.L.A.O.; Manzoli, O.L.; Bittencourt, T.N. Estruturas de concreto reforçadas com PRFC Parte II: Análise dos modelos de cisalhamento (CFRP reinforced concrete structures Part II: Analysis of shear models). Inst. Bras. Do Concreto (IBRACON) 2010, 3, 24–49. [Google Scholar] [CrossRef]
- Lu, Z.; Xie, J.; Zhang, H.; Li, J. Long-Term durability of basalt fiber-reinforced polymer (BFRP) Sheets and the epoxy resin matrix under a wet–dry cyclic condition in a chloride-containing environment. Multidiscip. Digit. Publ. Inst. 2017, 9, 652. [Google Scholar] [CrossRef]
- Valente, M. Seismic upgrading strategies for non-ductile plan-wise irregular R/C structures. Procedia Eng. 2013, 54, 539–553. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Alternative retrofitting strategies to prevent the failure of an under-designed reinforced concrete frame. Eng. Fail. Anal. 2018, 89, 271–285. [Google Scholar] [CrossRef]
- Mercimek, Ö.; Anıl, Ö.; Akkaya, S.T.; Erdem, R.T.; Çelik, A.; Kopraman, Y.; Abukan, A. Experimental behavior of shear deficient RC beams strengthened with CFRP strips againts reversible cylic earthquake load. Struct. Concr. 2025. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Yazman, Ş.; Aksoylu, C.; Arslan, M.H.; Gemi, L. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening. Constr. Build. Mater. 2021, 275, 122173. [Google Scholar] [CrossRef]
- Sabetifar, H.; Fakhari, M.; Nikofar, M.; Nematzadeh, M. Comprehensive study of eccentrically loaded CFRP-confined RC columns maximum capacity: Prediction via ANN and GEP. Multiscale Multidiscip. Mod. Exper. Des. 2025, 8, 158. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mostofinejad, D.; Saljoughian, A.; Tehrani, B.N. Seismic retrofit of square RC Short columns with shear-flexural failure mode via CFRP composites using different confinement techniques. J. Compos. Constr. 2020, 24, 04020029. [Google Scholar] [CrossRef]
- Moshiri, N.; Hosseini, A.; Mostofinejad, D. Strengthening of RC columns by longitudinal CFRP sheets: Effect of strengthening technique. Constr. Build. Mater. 2015, 79, 318–325. [Google Scholar] [CrossRef]
- Truong, G.T.; Kim, J.-C.; Choi, K.-K. Seismic performance of reinforced concrete columns retrofitted by various methods. Eng. Struct. 2017, 134, 217–235. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Wang, X.; Sui, L.; Huang, X.; Guo, M.; Hu, B. Seismic performance of large rupture strain FRP retrofitted RC columns with corroded steel reinforcement. Eng. Struct. 2020, 216, 110744. [Google Scholar] [CrossRef]
- Eid, R.; Paultre, P. Compressive behavior of FRP-confined reinforced concrete columns. Eng. Struct. 2017, 132, 518–530. [Google Scholar] [CrossRef]
- del Rey Castillo, E.; Griffith, M.; Ingham, J. Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors. Compos. Struct. 2018, 203, 382–395. [Google Scholar] [CrossRef]
- Belarbi, A. Design of FRP Systems for Strengthening Concrete Girders in Shear; NCHRP Report 678; Transportation Research Board: Washington, DC, USA, 2011. [Google Scholar]
- Liang, X.; Peng, J.; Ren, R. A state-of-the-art review: Shear performance of the concrete beams reinforced with FRP bars. Constr. Build. Mater. 2023, 364, 129996. [Google Scholar] [CrossRef]
- Abrao, A.M.; Rubio, J.C.; Faria, P.E.; Davim, J.P. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Mater. Des. 2008, 29, 508–513. [Google Scholar] [CrossRef]
- Alam, M.S.; Hussein, A. (2013). Size effect on shear strength of FRP reinforced concrete beams without stirrups. J. Compos. Constr. 2013, 17, 507–516. [Google Scholar] [CrossRef]
- Del Zoppo, M.; Di Ludovico, M.; Balsamo, A.; Prota, A.; Manfredi, G. FRP for seismic strengthening of shear controlled RC columns: Experience from earthquakes and experimental analysis. Compos. Part B Eng. 2017, 129, 47–57. [Google Scholar] [CrossRef]
- Mei, S.J.; Bai, Y.L.; Dai, J.G.; Han, Q. Seismic behaviour of shear critical square RC columns strengthened by large rupture strain FRP. Eng. Struct. 2023, 280, 115679. [Google Scholar] [CrossRef]
- Parvin, A.; Brighton, D. FRP composites strengthening of concrete columns under various loading conditions. Polymers 2014, 6, 1040–1056. [Google Scholar] [CrossRef]
- Askar, M.K.; Hassan, A.F.; Al-Kamaki, Y.S. Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Stud. Constr. Mater. 2022, 17, e01189. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Saatcioglu, M. Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork. J. Struct. Eng. 2007, 133, 44–56. [Google Scholar] [CrossRef]
- Kumutha, R.; Vaidyanathan, R.; Palanichamy, M.S. (2007). Behaviour of reinforced concrete rectangular columns strengthened using GFRP. Cement Concr. Compos. 2007, 29, 609–615. [Google Scholar] [CrossRef]
- Büyüksaraç, A.; Işik, E.; Bektaş, O.; Avcil, F. Achieving intensity distributions of 6 February 2023 Kahramanmaraş (Türkiye) earthquakes from peak ground acceleration records. Sustainability 2024, 16, 599. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey—A synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef]
- TSDC. Turkish Seismic Design Code; T.C. Resmi Gazete: Ankara, Türkiye, 2007. [Google Scholar]
- TBEC. Turkish Building Earthquake Code; T.C. Resmi Gazete: Ankara, Türkiye, 2018. [Google Scholar]
- Yenidogan, C. Evaluation of overall seismic performance of rc structures and effectiveness of seismic isolation technology under extreme events: February 6, 2023, earthquakes. Buildings 2025, 15, 990. [Google Scholar] [CrossRef]
- Oyguc, E.; Oyguc, R.; Hayir, A. Assessment of a substandard reinforced concrete frame’s beam–column joint using shake table testing. Appl. Sci. 2025, 15, 4168. [Google Scholar] [CrossRef]
- Aydin, M.F.; Altindal, A.; Erberik, M.A.; Askan, A. Extreme characteristics of the ground motions recorded during the 2023 Kahramanmaras Turkiye earthquakes and their effect on inelastic seismic response of rc frame buildings. J. Earthq. Eng. 2025, 1–19. [Google Scholar] [CrossRef]
- Dedeoglu, I.O.; Yetkin, M.; Tunc, G.; Ozbulut, O.E. Evaluating earthquake-induced damage in Dogansehir, Malatya after 2023 Kahramanmaras earthquake sequence: Geotechnical and structural perspectives. J. Build. Eng. 2025, 104, 112266. [Google Scholar] [CrossRef]
- Sivrikaya, O.; Türker, E.; Cüre, E.; Atmaca, E.E.; Angin, Z.; Başağa, H.B.; Altunişik, A.C. Impact of soil conditions and seismic codes on collapsed structures during the 2023 Kahramanmaraş earthquakes: An in-depth study of 400 reinforced concrete buildings. Soil Dyn. Earthq. Eng. 2025, 190, 109119. [Google Scholar] [CrossRef]
- Seismosoft. SeismoStruct 2024—A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. 2024. Available online: http://www.seismosoft.com (accessed on 10 October 2024).
- Antoniou, S.; Pinho, R. SeismoStruct–Seismic Analysis Program by Seismosoft; Technical User Manuel; SeismoStruct: Pavia, Italy, 2003. [Google Scholar]
- Krawinkler, H.; Seneviratna, G.D.P.K. Pros and cons of a pushover analysis of seismic performance evaluation. Eng. Struct. 1998, 20, 452–464. [Google Scholar] [CrossRef]
- Chopra, A.K.; Goel, R.K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthq. Eng. Struct. Dyn. 2002, 31, 561–582. [Google Scholar] [CrossRef]
- Elnashai, A.S. Advanced inelastic static (pushover) analysis for earthquake applications. Struct. Eng. Mech. 2001, 12, 51–69. [Google Scholar] [CrossRef]
- EN 1998-3; Eurocode-8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Bruxelles, Belgium, 2005.
Parameter | Value | |
---|---|---|
Beams | 250 × 600 mm | |
Height of slab (mm) | 120 mm | |
Each story height (m) | 3 m | |
Concrete cover (mm) | 25 mm | |
Columns | 400 × 500 mm | |
Longitudinal reinforcement (columns) | Corners | 4Φ20 |
Top and bottom | 4Φ16 | |
Left and right | 4Φ16 | |
Longitudinal reinforcement (beams) | Lower | 5Φ12 |
Upper | 3Φ12 | |
Sides | 2Φ12 | |
Stirrup (beam) | Φ8/150 | |
Local ground type | ZE | |
Damping ratio | 5% | |
Importance class | II | |
Target displacement | 0.42 m |
Model No. | Concrete Grade | Transverse Reinforcement Grade | Transverse Reinforcement Diameter (mm) | Transverse Reinforcement Spacing (mm) |
---|---|---|---|---|
Model 1 | C8/10 | S220 | 8 | 100 |
Model 2 | C8/10 | S220 | 8 | 200 |
Model 3 | C8/10 | S220 | 8 | 300 |
Model 4 | C12/15 | S220 | 8 | 200 |
Model 5 | C16/20 | S220 | 8 | 200 |
Model 6 | C20/25 | S220 | 8 | 200 |
Model 7 | C25/30 | S220 | 8 | 200 |
Model 8 | C30/37 | S220 | 8 | 200 |
Model 9 | C25/30 | S220 | 8 | 100 |
Model | Period (s) | Base Shear (kN) | K-Elas (kN/m) | K-Eff (kN/m) | Target Displacement (m) | ||
---|---|---|---|---|---|---|---|
DL | SD | NC | |||||
Model 1 | 0.7756842 | 2570.31 | 62,073.61 | 38,806.99 | 0.090362 | 0.1159194 | 0.2009633 |
Model 2 | 0.7756842 | 2556.35 | 62,135.52 | 39,130.43 | 0.0899878 | 0.1154394 | 0.2001311 |
Model 3 | 0.7756842 | 2551.25 | 62,010.17 | 39,107.54 | 0.0900127 | 0.1154713 | 0.2001864 |
Model 4 | 0.7402242 | 2700.82 | 69,824.23 | 42,504.54 | 0.0863432 | 0.1107639 | 0.1920255 |
Model 5 | 0.7120331 | 2805.8 | 77,373.58 | 45,615.92 | 0.0833472 | 0.1069206 | 0.1853625 |
Model 6 | 0.6887665 | 2882.47 | 83,970.68 | 48,511.71 | 0.0808219 | 0.103681 | 0.1797462 |
Model 7 | 0.6645555 | 2953.49 | 94,468.79 | 52,281.54 | 0.077854 | 0.0998737 | 0.1731457 |
Model 8 | 0.6450407 | 2998.06 | 108,517.74 | 55,964.87 | 0.0752494 | 0.0965324 | 0.1673531 |
Model 9 | 0.6645555 | 2952.37 | 94,464.45 | 52,262.82 | 0.0778679 | 0.0998916 | 0.1731768 |
Storey | Column | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Demand | Limit | Demand | Limit | Demand | Limit | Demand | Limit | Demand | Limit | ||
1 | Col1 | 108.27 | 106.26 | 106.54 | 86.10 | 114.52 | 73.97 | 119.83 | 86.16 | 116.78 | 103.63 |
Col2 | 124.02 | 122.12 | 122.57 | 102.41 | 129.46 | 88.48 | 134.38 | 95.38 | 120.37 | 102.46 | |
Col3 | 123.92 | 122.01 | 122.47 | 102.27 | 129.36 | 88.34 | 134.22 | 95.17 | 115.47 | 104.46 | |
Col4 | 108.23 | 106.21 | 106.51 | 86.06 | 114.45 | 73.89 | 119.77 | 77.73 | 99.89 | 89.17 | |
Col5 | 170.67 | 152.32 | 171.05 | 124.59 | 163.61 | 109.29 | 181.01 | 163.97 | 188.00 | 176.02 | |
Col6 | 177.20 | 152.55 | 177.76 | 119.36 | 166.19 | 105.95 | 193.36 | 163.28 | 202.47 | 190.49 | |
Col7 | 177.11 | 152.70 | 177.68 | 119.46 | 166.20 | 106.05 | 193.05 | 163.31 | 202.14 | 190.19 | |
Col8 | 170.71 | 155.85 | 171.08 | 124.59 | 163.63 | 109.29 | 181.07 | 164.06 | 188.06 | 176.09 | |
Col9 | 167.63 | 156.69 | 167.54 | 125.50 | 162.61 | 109.50 | 173.63 | 156.10 | 177.64 | 163.41 | |
Col10 | 174.78 | 153.12 | 175.15 | 122.57 | 165.92 | 106.26 | 187.12 | 163.51 | 192.76 | 181.97 | |
Col11 | 174.83 | 153.09 | 175.21 | 122.55 | 165.94 | 106.24 | 187.25 | 163.51 | 192.91 | 182.15 | |
Col12 | 167.65 | 156.69 | 167.56 | 125.50 | 162.62 | 109.49 | 173.67 | 156.14 | 177.69 | 163.46 | |
Col13 | 178.40 | 151.59 | 176.71 | 118.73 | 169.67 | 102.37 | 185.76 | 157.15 | 197.41 | 186.98 | |
Col14 | 182.66 | 149.33 | 180.91 | 115.64 | 171.66 | 97.94 | 193.18 | 152.13 | 208.14 | 187.89 | |
Col15 | 182.66 | 149.33 | 180.91 | 115.64 | 171.66 | 97.94 | 193.17 | 152.13 | 208.13 | 187.89 | |
Col16 | 178.40 | 151.59 | 176.71 | 118.73 | 169.67 | 102.37 | 185.76 | 157.14 | 197.41 | 186.97 | |
2 | Col1 | No exceed | 79.75 | 78.61 | 72.68 | 65.68 | No exceed | No exceed | |||
Col5 | 162.83 | 162.02 | 162.58 | 127.44 | 159.32 | 115.97 | 166.57 | 149.73 | 171.37 | 162.95 | |
Col9 | 162.78 | 161.88 | 162.04 | 127.57 | 161.67 | 115.92 | 164.51 | 148.01 | 168.08 | 159.54 | |
Col13 | No exceed | 134.27 | 110.19 | 131.20 | 97.33 | 142.76 | 140.36 | 151.05 | 150.85 |
Model | Total Number of Columns on the First Floor | Total Number of Columns on the Second Floor | Exceeded Number of Columns | % |
---|---|---|---|---|
Model 1 | 16 | 2 | 18 | 16 |
Model 2 | 16 | 4 | 20 | 18 |
Model 3 | 16 | 4 | 20 | 18 |
Model 4 | 16 | 3 | 19 | 17 |
Model 5 | 16 | 3 | 19 | 17 |
Model 6 | 16 | 2 | 18 | 16 |
Model 7 | 16 | 2 | 18 | 16 |
Model 8 | There is no exceed | 0 | ||
Model 9 | 5 | 0 | 5 | 4 |
Parameter | Value |
---|---|
Fiber thickness | 0.1660 mm |
Tensile strength | 3800 MPa |
Tensile Modulus | 230,000 MPa |
Elongation (%) | 1.50 |
Weight | 300 g/m2 |
Storey | Column | FRP1 | FRP2 | FRP3 | FRP4 | ||||
---|---|---|---|---|---|---|---|---|---|
Demand | Limit | Demand | Limit | Demand | Limit | Demand | Limit | ||
1 | Col1 | 109.82 | 73.47 | 127.63 | 74.42 | 101.28 | 243.28 | 109.98 | 231.87 |
Col2 | 125.70 | 89.90 | 132.53 | 85.15 | 116.13 | 259.77 | 126.30 | 248.34 | |
Col3 | 125.60 | 89.71 | 132.54 | 85.09 | 116.10 | 259.62 | 126.13 | 248.10 | |
Col4 | 109.92 | 73.44 | 127.60 | 74.33 | 101.26 | 243.24 | 110.05 | 232.00 | |
Col5 | 168.05 | 111.87 | 126.07 | 93.18 | 175.29 | 281.16 | 172.65 | 264.48 | |
Col6 | 172.39 | 108.67 | 123.56 | 86.26 | 185.20 | 278.02 | 178.66 | 257.49 | |
Col7 | 172.40 | 108.75 | 123.70 | 86.31 | 184.99 | 278.26 | 178.54 | 257.93 | |
Col8 | 168.07 | 111.82 | 126.10 | 93.17 | 175.33 | 281.18 | 172.72 | 264.40 | |
Col9 | 165.57 | 112.20 | 123.53 | 86.34 | 170.40 | 283.15 | 170.61 | 268.94 | |
Col10 | 168.28 | 229.38 | 119.68 | 82.80 | 180.68 | 278.65 | 176.71 | 262.87 | |
Col11 | 171.08 | 109.05 | 119.64 | 82.81 | 180.78 | 278.62 | 176.79 | 262.14 | |
Col12 | 165.75 | 112.11 | 123.59 | 86.35 | 170.43 | 283.15 | 170.59 | 268.87 | |
Col13 | 175.03 | 105.67 | 115.69 | 78.20 | 177.30 | 278.98 | 180.91 | 270.14 | |
Col14 | 178.17 | 101.45 | 103.85 | 70.09 | 182.71 | 274.74 | 186.30 | 266.71 | |
Col15 | 178.15 | 101.43 | 103.90 | 70.11 | 182.70 | 274.74 | 186.29 | 266.74 | |
Col16 | 174.99 | 105.60 | 115.80 | 78.23 | 177.30 | 263.23 | 180.87 | 270.21 | |
2 | Col1 | 78.23 | 66.07 | 77.26 | 237.01 | 81.61 | 68.52 | 85.60 | 235.09 |
Col5 | 162.34 | 115.81 | 77.26 | 237.01 | 162.32 | 116.14 | 165.09 | 283.01 | |
Col9 | 162.50 | 115.89 | 159.42 | 282.73 | 160.90 | 116.27 | 166.29 | 282.59 | |
Col13 | 132.71 | 97.84 | 132.24 | 268.08 | 137.04 | 99.48 | 137.35 | 265.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, E.; Radu, D.; Harirchian, E.; Avcil, F.; Arkan, E.; Büyüksaraç, A.; Hadzima-Nyarko, M. Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes. Buildings 2025, 15, 1535. https://doi.org/10.3390/buildings15091535
Işık E, Radu D, Harirchian E, Avcil F, Arkan E, Büyüksaraç A, Hadzima-Nyarko M. Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes. Buildings. 2025; 15(9):1535. https://doi.org/10.3390/buildings15091535
Chicago/Turabian StyleIşık, Ercan, Dorin Radu, Ehsan Harirchian, Fatih Avcil, Enes Arkan, Aydın Büyüksaraç, and Marijana Hadzima-Nyarko. 2025. "Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes" Buildings 15, no. 9: 1535. https://doi.org/10.3390/buildings15091535
APA StyleIşık, E., Radu, D., Harirchian, E., Avcil, F., Arkan, E., Büyüksaraç, A., & Hadzima-Nyarko, M. (2025). Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes. Buildings, 15(9), 1535. https://doi.org/10.3390/buildings15091535