Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing
Abstract
1. Introduction
Materials/Methods | Advantages | Disadvantages | Applications | Performance Characteristics | Key References |
---|---|---|---|---|---|
Epoxy resins | Strong adhesion, watertight seal, chemical resistance | High carbon footprint, non-biodegradable, environmental concerns | Used in structural repair of cracks in bridges, dams, and nuclear facilities. | Flexural strength increased by 357.14%, tensile strength by 272.77%, and compressive strength by 111.2% compared to ordinary concrete. | [15] |
Asphalt binder | Durable, effective sealing | Susceptible to performance deterioration in extreme conditions, high lifecycle costs | Ideal for roads and high-stress applications prone to thermal expansion. | Increased 126 times with anti-rutting additive, excellent adhesion (74.7 mJ/m2), and cohesion properties. | [20] |
Polyurethane sealants | Flexible, durable, good for both interior and exterior repairs | May require repeated applications in high-movement areas | Sealing cracks and expansion joints in concrete pavements and other structures. | Improved shape recovery, tailored transition temperature (Tt), and 3% TiO2 content for superior durability. | [17] |
Non-shrink grouts | High strength, maintains volume during setting | Requires proper mixing and application | Filling voids, repairing cracks in masonry | 10% Ordinary Portland Cement performs like commercial non-shrink grouts, with strong resistance to 5% MgSO4 and excellent compressive and bond strength. | [16] |
Ferrocement | High tensile strength, durable, flexible, and lightweight | Labor-intensive, requires skilled application | Structural repairs, thin-shell construction, water tanks, marine structures | Composite materials improve strength, crack resistance, and ductility. | [21] |
2. Methodology
2.1. Approach of Study
2.2. Data Extraction and Search Strategy
2.3. Rationale for Database Selection
2.4. Data Categorization and Analysis
2.5. Visualization and Network Mapping
3. Results and Discussion
3.1. Yearly Publication and Citation Trends
3.2. Global Distribution and Leading Countries
3.3. Top Prolific Authors
3.4. Top Preferred Publication Sources
3.5. Keywords Co-Occurrence Analysis
3.6. Co-Occurrence Analysis of Textual Data
4. Implications of the Bibliometric Analysis
5. Challenges and Considerations for Large-Scale Implementation
5.1. Cost Challenges in MICP Implementation
5.2. Long-Term Performance and Durability Concerns
5.3. Scalability and Optimization Challenges
6. MICP Integration with Existing Construction Standards
7. Limitations and Future Directions of MICP for Crack Repair
8. Conclusions
- i.
- This study provides a comprehensive bibliometric analysis of MICP research from 2007 to 2024, offering insights into global research trends, collaboration networks, and regulatory challenges affecting MICP adoption. The findings highlight the growing academic interest in MICP, with China, the USA, and India leading research efforts. By integrating industrial by-products like fly ash and slag, MICP contributes to sustainability and circular economy principles, reducing reliance on synthetic repair materials.
- ii.
- MICP has demonstrated the ability to seal cracks up to 2 mm wide, enhance mechanical properties, and reduce water permeability, making it a viable alternative to conventional crack repair methods. The technology supports self-healing capabilities, reducing maintenance costs and extending the service life of concrete structures. Innovations in encapsulated bacteria and optimized nutrient formulations show promise in improving MICP’s effectiveness and durability.
- iii.
- High implementation costs remain a barrier, necessitating further research into cost-effective bacterial cultivation and cementation solutions. Scalability issues persist, as MICP’s application in real-world infrastructure is limited by inconsistent performance across different environmental conditions. Regulatory barriers hinder large-scale adoption, as MICP lacks standardized testing protocols, certifications, and industry guidelines.
- iv.
- For future research directions, researchers should develop affordable bacterial growth media using alternative nutrient sources such as agricultural and industrial by-products. There should be established clear guidelines and standards to facilitate commercial adoption and integration into construction codes. More investigations on long-term MICP performance under freeze–thaw cycles, varying humidity levels, and different pH conditions are required. Pilot projects to test MICP’s feasibility in real-world construction settings should be expanded, including its integration into green building certifications like the Green Building Index.
- v.
- MICP holds immense potential as a sustainable and innovative solution for concrete crack repair. By addressing cost, scalability, and regulatory challenges, MICP can transition from a promising research concept to a mainstream eco-friendly construction technology. Future advancements will determine MICP’s role in shaping next-generation sustainable infrastructure.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, S.-E.; Kim, J.-S.; Maeng, S.K.; Oh, S.; Chung, S.-Y. Influence of Bacterial Biomineralization Conditions on the Microstructural Characteristics of Cement Mortar. J. Build. Eng. 2024, 91, 109455. [Google Scholar] [CrossRef]
- Asvitha, V.S.; Ravi, K.M.S. Review on the Mechanism and Mitigation of Cracks in Concrete. Appl. Eng. Sci. 2023, 16, 100154. [Google Scholar] [CrossRef]
- Hameed, A.; Afzal, M.F.U.D.; Javed, A.; Rasool, A.M.; Qureshi, M.U.; Mehrabi, A.B.; Ashraf, I. Behavior and Performance of Reinforced Concrete Columns Subjected to Accelerated Corrosion. Metals 2023, 13, 930. [Google Scholar] [CrossRef]
- Chen, H.; Qian, C.; Huang, H. Self-Healing Cementitious Materials Based on Bacteria and Nutrients Immobilized Respectively. Constr. Build. Mater. 2016, 126, 297–303. [Google Scholar] [CrossRef]
- Rong, H.; Wei, G.; Ma, G.; Zhang, Y.; Zheng, X.; Zhang, L.; Xu, R. Influence of Bacterial Concentration on Crack Self-Healing of Cement-Based Materials. Constr. Build. Mater. 2020, 244, 118372. [Google Scholar] [CrossRef]
- Kanwal, M.; Adnan, F.; Khushnood, R.A.; Jalil, A.; Khan, H.A.; Wattoo, A.G.; Rasheed, S. Biomineralization and Corrosion Inhibition of Steel in Simulated Bio-Inspired Self-Healing Concrete. J. Build. Eng. 2024, 82, 108224. [Google Scholar] [CrossRef]
- Golewski, G.L. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection—A Review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Sánchez, M.; Faria, P.; Ferrara, L.; Horszczaruk, E.; Jonkers, H.M.; Kwiecień, A.; Mosa, J.; Peled, A.; Pereira, A.S.; Snoeck, D.; et al. External Treatments for the Preventive Repair of Existing Constructions: A Review. Constr. Build. Mater. 2018, 193, 435–452. [Google Scholar] [CrossRef]
- Meng, X.; Yuan, J.; Huang, Q.; Liu, R.; Yang, Y.; Yang, X.; Wang, K. A Review of Sources, Hazards, and Removal Methods of Microplastics in the Environment. Water 2025, 17, 102. [Google Scholar] [CrossRef]
- Ahire, J.P.; Bergman, R.; Runge, T.; Chmely, S.C. Techno-Economic and Life Cycle Assessment of Lignin-Based Blended Resin for 3D Printing. Ind. Crops Prod. 2025, 227, 120803. [Google Scholar] [CrossRef]
- Albadrani, M.A.; Almutairi, A.D. Impact of Eco-Friendly Plaster Using Epoxy Resin and Epoxy Hardener on Mechanical Properties under Compression and Tension. Polymers 2024, 16, 548. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Dueñas-Moreno, J.; Mora, A.; Cervantes-Avilés, P.; Mahlknecht, J. Groundwater Contamination Pathways of Phthalates and Bisphenol A: Origin, Characteristics, Transport, and Fate—A Review. Environ. Int. 2022, 170, 107550. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hao, X.; He, J.; Cai, Y.; Guo, P.; Ma, Q. Preparation and Performance Study of Rapid Repair Epoxy Concrete for Bridge Deck Pavement. Materials 2024, 17, 2674. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.D.; Alateyah, A.I.; Saeed, M.K.; Dahish, H.A.; El-Garaihy, W.H.; Alawad, M.O.; BaQais, A. Comprehensive Investigation of the Mechanical Performance and Evaluate the Environmental Impact of Epoxy and Polyester Polymer Concrete. Case Stud. Constr. Mater. 2025, 22, e04195. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Sriopas, B.; Phosri, P.; Yoddumrong, P.; Anantakarn, K.; Kroehong, W. Hybrid High Calcium Fly Ash Alkali-Activated Repair Material for Concrete Exposed to Sulfate Environment. J. Build. Eng. 2022, 45, 103590. [Google Scholar] [CrossRef]
- Shen, D.; Shi, S.; Xu, T.; Huang, X.; Liao, G.; Chen, J. Development of Shape Memory Polyurethane Based Sealant for Concrete Pavement. Constr. Build. Mater. 2018, 174, 474–483. [Google Scholar] [CrossRef]
- Javeed, Y.; Goh, Y.; Mo, K.H.; Yap, S.P.; Leo, B.F. Microbial Self-Healing in Concrete: A Comprehensive Exploration of Bacterial Viability, Implementation Techniques, and Mechanical Properties. J. Mater. Res. Technol. 2024, 29, 2376–2395. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, B.; Wei, K.; Wang, L.; Kang, X.; Chang, X. Orthogonal Experimental Analysis of the Material Ratio and Preparation Technology of Single-Component Epoxy Resin for Asphalt Pavement Crack Repair. Constr. Build. Mater. 2021, 288, 123074. [Google Scholar] [CrossRef]
- Li, Y.; Tian, G.; Guo, W.; Wei, Z.; Zhou, Z.; Chen, Z.; Huang, X.; Gao, Y. Fatigue Resistance of Asphalt and Asphalt Mixture Incorporated with High-Elasticity Anti-Rutting Additive. Constr. Build. Mater. 2025, 459, 139730. [Google Scholar] [CrossRef]
- Shaheen, Y.B.I.; Mahmoud, A.M.; Refat, H.M. Experimental and FE Simulations of Ferrocement Columns Incorporating Composite Materials. Struct. Eng. Mech. 2017, 64, 155–171. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Ong, D.E.L.; Li, P.Y.; Senian, N.; Hei, N.L.; Esnault-Filet, A.; Muda, K.; Nissom, P.M. Effects of Push-Pull Injection-Suction Spacing on Sand Biocementation Treatment. Geotech. Res. 2024, 11, 28–42. [Google Scholar] [CrossRef]
- Matsubara, H.; Yamada, T. Mathematical Modelling and Simulation of Microbial Carbonate Precipitation: The Urea Hydrolysis Reaction. Acta Geotech. 2020, 15, 29–38. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; De Belie, N.; Boon, N. Complementing Urea Hydrolysis and Nitrate Reduction for Improved Microbially Induced Calcium Carbonate Precipitation. Appl. Microbiol. Biotechnol. 2019, 103, 8825–8838. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ali, A.; Su, J.; Liu, J.; Wang, Z.; Zhang, L. Microbial Induced Calcium Precipitation Based Anaerobic Immobilized Biofilm Reactor for Fluoride, Calcium, and Nitrate Removal from Groundwater. Chemosphere 2022, 295, 133955. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ali, A.; Su, J.; Wu, Z.; Zhang, R.; Xiong, R. Simultaneous Removal of Calcium, Fluoride, Nickel, and Nitrate Using Microbial Induced Calcium Precipitation in a Biological Immobilization Reactor. J. Hazard. Mater. 2021, 416. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, K.; Sun, D.; Jiang, N.; Xu, W.; Wang, A. Evaluation of Urea Hydrolysis for MICP Technique Applied in Recycled Aggregate: Concentration of Urea and Bacterial Spores. Constr. Build. Mater. 2024, 419, 135366. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, A.C.Y.; Unluer, C.; Yang, E.-H. Development of a Functionally Graded Bacteria Capsule for Self-Healing Concrete. Cem. Concr. Compos. 2023, 136, 104863. [Google Scholar]
- Zhou, Y.; Elchalakani, M.; Cheng, L.; Shahin, M.A. Impact of Calcium Content and PH Value on MICP Crack Healing of Geopolymer Concrete. Cem. Concr. Compos. 2024, 146, 105410. [Google Scholar] [CrossRef]
- Rajasekar, A.; Zhao, C.; Wu, S.; Murava, R.T.; Wilkinson, S. Synergistic Biocementation: Harnessing Comamonas and Bacillus Ureolytic Bacteria for Enhanced Sand Stabilization. World J. Microbiol. Biotechnol. 2024, 40, 229. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, Y.; Wang, Y.; Zheng, L.; Zhang, Y.; Li, L.; Sun, B.; Li, S.; Zhu, Y. Study on MICP Dust Suppression Technology in Open Pit Coal Mine: Preparation and Mechanism of Microbial Dust Suppression Material. J. Environ. Manag. 2023, 343, 118181. [Google Scholar] [CrossRef]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-Healing Concrete by Use of Microencapsulated Bacterial Spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Huang, H.; Du, C.; Yi, F.; Wang, M.; Lv, Z. Enhancing Concrete Crack Healing: Revealing the Synergistic Impacts of Multicomponent Microbial Repair Systems. Case Stud. Constr. Mater. 2024, 21, e03402. [Google Scholar] [CrossRef]
- Elmenshawy, Y.; Elmahdy, M.A.R.; Moawad, M.; Elshami, A.A.; Ahmad, S.S.E.; Nagai, K. Investigating the Bacterial Sustainable Self-Healing Capabilities of Cracks in Structural Concrete at Different Temperatures. Case Stud. Constr. Mater. 2024, 20, e03188. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Guo, Z.; Xu, Q. Durability of MICP-Reinforced Calcareous Sand in Marine Environments: Laboratory and Field Experimental Study. Biogeotechnics 2023, 1, 100018. [Google Scholar] [CrossRef]
- Sun, X.; Huang, J.; Sun, W.; Chen, B.; Shen, H.; Wang, Y.; Feng, J. Incubation Temperature Effect on Bacterial Self-Healing Capabilities of Cementitious Mortar Cracks: Deep Learning Based Crack Sealing Rates Evaluations. Constr. Build. Mater. 2024, 441, 137489. [Google Scholar] [CrossRef]
- Fan, Q.; Fan, L.; Quach, W.M.; Zhang, R.; Duan, J.; Sand, W. Application of Microbial Mineralization Technology for Marine Concrete Crack Repair: A Review. J. Build. Eng. 2023, 69, 106299. [Google Scholar] [CrossRef]
- Rahul Rollakanti, C.; Srinivasu, K. Effect of Microbially Induced Calcium Carbonate Precipitation (MICP) Method on the Enhancement of Infrastructure Durability and Sustainability—A State of the Art Review. Mater. Today Proc. 2022, 65, 1608–1613. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M.; Deo, S.V. Bacteria Based Self Healing Concrete—A Review. Constr. Build. Mater. 2017, 152, 1008–1014. [Google Scholar] [CrossRef]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A. A Systematic Review of Bacteria-Based Self-Healing Concrete: Biomineralization, Mechanical, and Durability Properties. J. Build. Eng. 2022, 49, 104038. [Google Scholar] [CrossRef]
- Mutitu, K.D.; Munyao, M.O.; Wachira, M.J.; Mwirichia, R.; Thiong’o, K.J.; Marangu, M.J. Effects of Biocementation on Some Prop-erties of Cement-Based Materials Incorporating Bacillus Species Bacteria—A Review. J. Sustain. Cem. Based Mater. 2019, 8, 309–325, Erratum in J. Sustain. Cem. Based Mater. 2019, 8, 326. [Google Scholar]
- Omoregie, A.I.; Muda, K.; Ong, D.E.L.; Ojuri, O.O.; Bin Bakri, M.K.; Rahman, M.R.; Basri, H.F.; Ling, Y.E. Soil Bio-Cementation Treatment Strategies: State-of-the-Art Review. Geotech. Res. 2023, 11, 3–27. [Google Scholar] [CrossRef]
- Maurente-Silva, D.G.; Borowski, J.V.; Cappellesso, V.G.; Vainstein, M.H.; Masuero, A.B.; Dal Molin, D.C. Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material. Buildings 2024, 14, 3782. [Google Scholar] [CrossRef]
- Wan, S.; Shu, Z.; Kang, S.; Zhong, W.; Zhang, X.; Wu, H.; Liu, R. Microbial-Induced Calcium Carbonate Precipitation and Basalt Fiber Cloth Reinforcement Used for Sustainable Repair of Tunnel Lining Cracks. Buildings 2024, 14, 3609. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, Y. Study on Calcium Carbonate Deposition of Microorganism Bottom Grouting to Repair Concrete Cracks. Sustainability 2023, 15, 3723. [Google Scholar] [CrossRef]
- Wei, H.; Fan, Y.; Du, H.; Liang, R.; Wang, X. Regulation of Calcium Source and Addition Method for MICP in Repairing High-Temperature Concrete Damage. Applied Sciences 2023, 13, 5528. [Google Scholar]
- Yue, Y.; Lv, Y. A Machine Learning-Based Decision Support System for Predicting and Repairing Cracks in Undisturbed Loess Using Microbial Mineralization and the Internet of Things. Sustainability 2023, 15, 8269. [Google Scholar] [CrossRef]
- Kumpulainen, M.; Seppänen, M. Combining Web of Science and Scopus Datasets in Citation-Based Literature Study. Scientometrics 2022, 127, 5613–5631. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-Scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Shishehgarkhaneh, M.B.; Moehler, R.C.; Moradinia, S.F. Blockchain in the Construction Industry between 2016 and 2022: A Review, Bibliometric, and Network Analysis. Smart Cities 2023, 6, 819–845. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Alhassan, M.; Ouahbi, T. Comments on “Extraction, Purification, Characteristics, Bioactivities, Prospects, and Toxicity of Lilium Spp. Polysaccharides by Li et al. (2024) in Int. J. Biol. Macromol.”. Int. J. Biol. Macromol. 2024, 283, 137770. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Achal, V.; Mukerjee, A.; Sudhakara Reddy, M. Biogenic Treatment Improves the Durability and Remediates the Cracks of Concrete Structures. Constr. Build. Mater. 2013, 48, 1–5. [Google Scholar] [CrossRef]
- Preyadarshi, S.; Iyappan, G.R.; Leema rose, A.; Elango, D. Experimental and Analytical Study on Bio- Mineralization Process with Replacement of Cement by Microbial-Cementation. Int. J. Civ. Eng. Technol. 2018, 9, 715–724. [Google Scholar]
- Nugroho, A.; Kozin, M.; Bo, Z.; Mamat, R.; Ghazali, M.F.; Kamil, M.P.; Puranto, P.; Fitriani, D.A.; Azahra, S.A.; Suwondo, K.P.; et al. Recent Advances in Harnessing Biolubricants to Enhance Tribological Performance and Environmental Responsibility—Bibliometric Review (2015–2024). Clean. Eng. Technol. 2024, 23, 100821. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Marchelina, N. Crack Repairing Performance by Soybean Urease Induced Calcium Carbonate Precipitation (SICP) Combined with Fibers and Lightweight Aggregates. Constr. Build. Mater. 2025, 458, 139678. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Song, Y.; Zhao, Y.; Fei, X. A Novel Conceptual Design for Self-Healing of Cracked Cementitious Composites Incorporating Two Bacteria-Based Capsules. Compos. B Eng. 2024, 287, 111872. [Google Scholar] [CrossRef]
- Nain, N.; Surabhi, R.; Yathish, N.V.; Krishnamurthy, V.; Deepa, T.; Tharannum, S. Enhancement in Strength Parameters of Concrete by Application of Bacillus Bacteria. Constr. Build. Mater. 2019, 202, 904–908. [Google Scholar] [CrossRef]
- Anand, K.; Goyal, S.; Reddy, M.S. Crack Healing in Concrete by Microbially Induced Calcium Carbonate Precipitation as Assessed through Electromechanical Impedance Technique. Eur. J. Environ. Civ. Eng. 2022, 27, 1123–1143. [Google Scholar] [CrossRef]
- Choi, S.-G.; Wang, K.; Wen, Z.; Chu, J. Mortar Crack Repair Using Microbial Induced Calcite Precipitation Method. Cem. Concr. Compos. 2017, 83, 209–221. [Google Scholar] [CrossRef]
- Reeksting, B.J.; Hoffmann, T.D.; Tan, L.; Paine, K.; Gebhard, S. In-Depth Profiling of Calcite Precipitation by Environmental Bacteria Reveals Fundamental Mechanistic Differences with Relevance to Application. Appl. Environ. Microbiol. 2020, 86, e02739-19. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Bundur, Z.B. Use of Corn-Steep Liquor as an Alternative Carbon Source for Biomineralization in Cement-Based Materials and Its Impact on Performance. Constr. Build. Mater. 2018, 165, 655–662. [Google Scholar] [CrossRef]
- Erşan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. Screening of Bacteria and Concrete Compatible Protection Materials. Constr. Build. Mater. 2015, 88, 196–203. [Google Scholar] [CrossRef]
- Fahimizadeh, M.; Abeyratne, A.D.; Mae, L.S.; Raman Singh, R.K.; Pasbakhsh, P. Biological Self-Healing of Cement Paste and Mortar by Non-Ureolytic Bacteria Encapsulated in Alginate Hydrogel Capsules. Materials 2020, 13, 3711. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, U.U.; Lahoti, M.; Chen, Z.; Qiu, J.; Cao, B.; Yang, E.-H. Viability of Bacterial Spores and Crack Healing in Bacteria-Containing Geopolymer. Constr. Build. Mater. 2018, 169, 716–723. [Google Scholar] [CrossRef]
- Sohail, M.G.; Disi, Z.A.; Zouari, N.; Nuaimi, N.A.; Kahraman, R.; Gencturk, B.; Rodrigues, D.F.; Yildirim, Y. Bio Self-Healing Concrete Using MICP by an Indigenous Bacillus Cereus Strain Isolated from Qatari Soil. Constr. Build. Mater. 2022, 328, 126943. [Google Scholar] [CrossRef]
- Zamba, D.D.; Mohammed, T.A.; Getu, Y.M.; Tufa, D.H.; Demiss, B.A. Experimental Investigation on Self-Healing Efficiency of Mortar with Bacillus Subtilis and Bacillus Cereus. Adv. Mater. Sci. Eng. 2023, 2023, 9399101. [Google Scholar] [CrossRef]
- Cardoso, R.; Scholler, L.; Pinto, M.M.; Flores-Colen, I.; Covas, D. Experimental Analysis of Biocementation Technique for Sealing Cracks in Concrete Water Storage Tanks. Constr. Build. Mater. 2024, 412, 134854. [Google Scholar] [CrossRef]
- Hong, C.Y.; Muda, K.; Basri, H.F.; Omoregie, A.I.; Khudzari, J.M.; Ali, N.S.A.; Pauzi, F.M. Discovering Research Evolution and Emerging Trends in Ammonium Wastewater Treatment Technologies: A Bibliometric Analysis. Environ. Dev. Sustain. 2024, 26, 21877–21911. [Google Scholar] [CrossRef]
- Jarwar, M.A.; Dumontet, S.; Nastro, R.A.; Sanz-Montero, M.E.; Pasquale, V. Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis. Sustainability 2022, 14, 16114. [Google Scholar] [CrossRef]
- Liang, L.; Zhu, L. Major Factors Affecting China’s Inter-Regional Research Collaboration: Regional Scientific Productivity and Geographical Proximity. Scientometrics 2002, 55, 287–316. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Bangalore Ramu, M.; Kasim, N.; Alawag, A.M.; Baarimah, A.O. A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction. Buildings 2024, 14, 3240. [Google Scholar] [CrossRef]
- Xu, J.; Yao, W. Multiscale Mechanical Quantification of Self-Healing Concrete Incorporating Non-Ureolytic Bacteria-Based Healing Agent. Cem. Concr. Res. 2014, 64, 1–10. [Google Scholar] [CrossRef]
- Bundur, Z.B.; Amiri, A.; Ersan, Y.C.; Boon, N.; De Belie, N. Impact of Air Entraining Admixtures on Biogenic Calcium Carbonate Precipitation and Bacterial Viability. Cem. Concr. Res. 2017, 98, 44–49. [Google Scholar] [CrossRef]
- Hoffmann, T.D.; Paine, K.; Gebhard, S. Genetic Optimisation of Bacteria-Induced Calcite Precipitation in Bacillus Subtilis. Microb. Cell Fact. 2021, 20, 214. [Google Scholar] [CrossRef]
- Ganendra, G.; De Muynck, W.; Ho, A.; Arvaniti, E.C.; Hosseinkhani, B.; Ramos, J.A.; Rahier, H.; Boon, N. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis Parvus OBBP. Appl. Environ. Microbiol. 2014, 80, 4659–4667. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Han, Q.; Wang, W.; Zhang, Y.; Lu, W.; Li, Z. A Sugar-Coated Microbial Agent for Self-Healing Cracks in Concrete. J. Build. Eng. 2023, 66, 105890. [Google Scholar] [CrossRef]
- Bundur, Z.B.; Kirisits, M.J.; Ferron, R.D. Biomineralized Cement-Based Materials: Impact of Inoculating Vegetative Bacterial Cells on Hydration and Strength. Cem. Concr. Res. 2015, 67, 237–245. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, W. Current Challenges and Future Directions for Bacterial Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3059–3070. [Google Scholar] [CrossRef]
- Soysal, A.; Milla, J.; King, G.M.; Hassan, M.; Rupnow, T. Evaluating the Self-Healing Efficiency of Hydrogel-Encapsulated Bacteria in Concrete. Transp Res Rec 2020, 2674, 113–123. [Google Scholar] [CrossRef]
- Jena, S.; Basa, B.; Panda, K.C.; Sahoo, N.K. Impact of Bacillus Subtilis Bacterium on the Properties of Concrete. Mater. Today Proc. 2020, 32, 651–656. [Google Scholar] [CrossRef]
- Chuo, S.C.; Mohamed, S.F.; Setapar, S.H.M.; Ahmad, A.; Jawaid, M.; Wani, W.A.; Yaqoob, A.A.; Ibrahim, M.N.M. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials 2020, 13, 4993. [Google Scholar] [CrossRef] [PubMed]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next Generation of Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef]
- Bundur, Z.B.; Sungwoo, B.; Jo, K.M.; Douglas, F.R. Biomineralization in Self-Healing Cement-Based Materials: Investigating the Temporal Evolution of Microbial Metabolic State and Material Porosity. J. Mater. Civ. Eng. 2017, 29, 4017079. [Google Scholar] [CrossRef]
- Chen, H.-J.; Chen, M.-C.; Tang, C.-W. Research on Improving Concrete Durability by Biomineralization Technology. Sustainability 2020, 12, 1242. [Google Scholar] [CrossRef]
- Tanyildizi, H.; Ziada, M.; Uysal, M.; Doğruöz Güngör, N.; Coşkun, A. Comparison of Bacteria-Based Self-Healing Methods in Metakaolin Geopolymer Mortars. Case Stud. Constr. Mater. 2022, 16, e00895. [Google Scholar] [CrossRef]
- Shashank, B.S.; Dhannur, B.; Ravishankar, H.N.; Nagaraj, P.S. Study on Development of Strength Properties of Bio-Concrete BT—Sustainable Construction and Building Materials. In Proceedings of the Lecture Notes in Civil Engineering; Das, B.B., Neithalath, N., Eds.; Springer: Singapore, 2019; Volume 25, pp. 423–437. [Google Scholar]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial Induced Calcium Carbonate Precipitation Study Using Bacillus Subtilis with Application to Self-Healing Concrete Preparation and Characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- Li, Z.; Liu, A.; Sun, C.; Li, H.; Kong, Z.; Zhai, H. Biomineralization Process of CaCO3 Precipitation Induced by Bacillus Mucilaginous and Its Potential Application in Microbial Self-Healing Concrete. Appl. Biochem. Biotechnol. 2023, 196, 1896–1920. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Su, Y.; Zhang, X.; Zhou, H.; Qian, C. Effect and Mechanism of Encapsulation-Based Spores on Self-Healing Concrete at Different Curing Ages. Acs Appl. Mater. Interfaces 2020, 12, 52415–52432. [Google Scholar] [CrossRef]
- Zheng, T.; Qian, C. Self-Healing of Later-Age Cracks in Cement-Based Materials by Encapsulation-Based Bacteria. J. Mater. Civ. Eng. 2020, 32, 04020341. [Google Scholar] [CrossRef]
- Zhu, X.; Mignon, A.; Nielsen, S.D.; Zieger, S.E.; Koren, K.; Boon, N.; De Belie, N. Viability Determination of Bacillus Sphaericus after Encapsulation in Hydrogel for Self-Healing Concrete via Microcalorimetry and in Situ Oxygen Concentration Measurements. Cem. Concr. Compos. 2021, 119, 104006. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, M.; Zhang, S.; Lu, L.; Fang, N.; Chen, J.; Shama, S.; Wang, J. Growth and Mineralization Characteristics of Bacillus Subtilis Isolated from Marine Aquaculture Wastewater and Its Application in Coastal Self-Healing Concrete. Mater. Today Commun. 2023, 35, 105654. [Google Scholar] [CrossRef]
- Charpe, A.U.; Latkar, M.V. Effect of Biocementation on Concrete Using Different Calcium Sources. Int. Conf. Adv. Civ. Eng. Ace 2020 2022, 172, 307–316. [Google Scholar]
- Menon, R.R.; Luo, J.; Chen, X.; Zhou, H.; Liu, Z.; Zhou, G.; Zhang, N.; Jin, C. Screening of Fungi for Potential Application of Self-Healing Concrete. Sci. Rep. 2019, 9, 2075. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Ali, A.M.; Faraz Bhatti, M.; Ahmed Khan, H. Self-Healing Fungi Concrete Using Potential Strains Rhizopus Oryzae and Trichoderma Longibrachiatum. J. Build. Eng. 2022, 50, 104155. [Google Scholar] [CrossRef]
- Zhan, M.; Fu, M.; Pan, G.; Lu, X.; Wang, Y. Recycled Aggregate Mortar Enhanced by Microbial Calcite Precipitation. Mag. Concr. Res. 2020, 72, 622–633. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, F.; Zhao, L.; Duan, X.; Feng, C.; Su, F. Effect of Biomineralization on the Early Mechanical Properties and Microstructure of Fly-Ash Cement-Based Materials. Constr. Build. Mater. 2022, 359, 129422. [Google Scholar] [CrossRef]
- Sarkar, M.; Maiti, M.; Mandal, S.; Xu, S. Enhancing Concrete Resilience and Sustainability through Fly Ash-Assisted Microbial Biomineralization for Self-Healing: From Waste to Greening Construction Materials. Chem. Eng. J. 2024, 481, 148148. [Google Scholar] [CrossRef]
- Imran, M.A.; Nakashima, K.; Evelpidou, N.; Kawasaki, S. Factors Affecting the Urease Activity of Native Ureolytic Bacteria Isolated from Coastal Areas. Geomech. Eng. 2019, 17, 421–427. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Zhou, T.; Bai, S.; Gao, Y.; Yao, D.; Li, L. Sulfate Acid Corrosion Mechanism of Biogeomaterial Based on MICP Technology. J. Mater. Civ. Eng. 2019, 31, 04021001. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Wang, X.; Wang, Z.; Yao, W. Application of Ureolysis-Based Microbial CaCO3 Precipitation in Self-Healing of Concrete and Inhibition of Reinforcement Corrosion. Constr. Build. Mater. 2020, 265, 120364. [Google Scholar] [CrossRef]
- Chek, A.; Crowley, R.; Ellis, T.N.; Durnin, M.; Wingender, B. Evaluation of Factors Affecting Erodibility Improvement for MICP-Treated Beach Sand. J. Geotech. Geoenvironmental Eng. 2021, 147, 04021001. [Google Scholar] [CrossRef]
- Peng, S.; Di, H.; Fan, L.; Fan, W.; Qin, L. Factors Affecting Permeability Reduction of MICP for Fractured Rock. Front. Earth Sci. 2020, 8, 207. [Google Scholar] [CrossRef]
- Thiyagarajan, H.; Maheswaran, S.; Mapa, M.; Krishnamoorthy, S.; Balasubramanian, B.; Murthy, A.R.; Iyer, N.R. Investigation of Bacterial Activity on Compressive Strength of Cement Mortar in Different Curing Media. J. Adv. Concr. Technol. 2016, 14, 125–133. [Google Scholar] [CrossRef]
- Ryu, Y.; Lee, K.-E.; Cha, I.-T.; Park, W. Optimization of Bacterial Sporulation Using Economic Nutrient for Self-Healing Concrete. J. Microbiol. 2020, 58, 288–296. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Response Surface Methodology-Based Optimization of Bacterial Cell Concentration for Microbial Concrete. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2022, 46, 1087–1102. [Google Scholar] [CrossRef]
- Tan, L.; Ke, X.; Li, Q.; Gebhard, S.; Ferrandiz-Mas, V.; Paine, K.; Chen, W. The Effects of Biomineralization on the Localised Phase and Microstructure Evolutions of Bacteria-Based Self-Healing Cementitious Composites. Cem. Concr. Compos. 2022, 128, 104421. [Google Scholar] [CrossRef]
- Salehi, P.; Dabbagh, H.; Ashengroph, M. Effects of Microbial Strains on the Mechanical and Durability Properties of Lightweight Concrete Reinforced with Polypropylene Fiber. Constr. Build. Mater. 2022, 322, 126519. [Google Scholar] [CrossRef]
- Shaheen, N.; Khushnood, R.A.; Memon, S.A.; Adnan, F. Feasibility Assessment of Newly Isolated Calcifying Bacterial Strains in Self-Healing Concrete. Constr. Build. Mater. 2023, 362, 129662. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Palombo, E.A.; Ong, D.E.L.L.; Nissom, P.M. A Feasible Scale-up Production of Sporosarcina Pasteurii Using Custom-Built Stirred Tank Reactor for in-Situ Soil Biocementation. Biocatal. Agric. Biotechnol. 2020, 24, 101544. [Google Scholar] [CrossRef]
- Manzur, T.; Rahman, F.; Afroz, S.; Huq, R.S.; Efaz, I.H. Potential of a Microbiologically Induced Calcite Precipitation Process for Durability Enhancement of Masonry Aggregate Concrete. J. Mater. Civ. Eng. 2017, 29, 04016290. [Google Scholar] [CrossRef]
- Aimi, M.A.R.M.; Hamidah, M.S.; Kartini, K.; Hana, H.N.; Khalilah, A.K.; Schlangen, E. Development of Autonomous-Healing Mortar Using Geobacillus Stearothermophilus. Aci Mater. J. 2021, 118, 3–11. [Google Scholar] [CrossRef]
- Rajasekar, A.; Moy, C.K.S.; Wilkinson, S.; Sekar, R. Microbially Induced Calcite Precipitation Performance of Multiple Landfill Indigenous Bacteria Compared to a Commercially Available Bacteria in Porous Media. PLoS ONE 2021, 16, e0254676. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Ngu, L.H.; Ong, D.E.L.; Nissom, P.M. Low-Cost Cultivation of Sporosarcina Pasteurii Strain in Food-Grade Yeast Extract Medium for Microbially Induced Carbonate Precipitation (MICP) Application. Biocatal. Agric. Biotechnol. 2019, 17, 247–255. [Google Scholar] [CrossRef]
- Yoosathaporn, S.; Tiangburanatham, P.; Bovonsombut, S.; Chaipanich, A.; Pathom-aree, W. A Cost Effective Cultivation Medium for Biocalcification of Bacillus Pasteurii KCTC 3558 and Its Effect on Cement Cubes Properties. Microbiol. Res. 2016, 186–187, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Maleki-Kakelar, M.; Aghaeinejad-Meybodi, A.; Sanjideh, S.; Azarhoosh, M.J. Cost-Effective Optimization of Bacterial Urease Activity Using a Hybrid Method Based on Response Surface Methodology and Artificial Neural Networks. Environ. Process. 2022, 9. [Google Scholar] [CrossRef]
- Gowthaman, S.; Koizumi, H.; Nakashima, K.; Kawasaki, S. Field Experimentation of Bio-Cementation Using Low-Cost Cementation Media for Preservation of Slope Surface. Case Stud. Constr. Mater. 2023, 18, e02086. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, H.; Tang, X.; Liu, K.; Ye, L.; Ma, G. Field Investigation of the Feasibility of MICP for Mitigating Natural Rainfall-Induced Erosion in Gravelly Clay Slope. Bull. Eng. Geol. Environ. 2024, 83, 406. [Google Scholar] [CrossRef]
- Liu, S.; Wen, K.; Armwood, C.; Bu, C.; Li, C.; Amini, F.; Li, L. Enhancement of MICP-Treated Sandy Soils against Environmental Deterioration. J. Mater. Civ. Eng. 2019, 31, 4019294. [Google Scholar] [CrossRef]
- Wang, J.; Ji, S.; Huang, S.; Jiang, Z.; Wang, S.; Zhang, H.; Wang, Z.; Zhang, J. Crack Sealing in Concrete with Biogrout: Sustainable Approach to Enhancing Mechanical Strength and Water Resistance. Materials 2024, 17, 6283. [Google Scholar] [CrossRef]
- Šovljanski, O.; Bulatović, V.; Milović, T.; Grahovac, J.; Erceg, T.; Dramićanin, M.; Tomić, A. Bioaugmentation of Industrial Wastewater and Formation of Bacterial–CaCO3 Coupled System for Self-Healing Cement. Buildings 2024, 14, 4011. [Google Scholar] [CrossRef]
- Esnault-Filet, A.; Gadret, J.-P.; Loygue, M.; Borel, S.; Filet, A.; Gadret, J.-P.; Loygue, M.; Borel, S.; Esnault-Filet, A.; Gadret, J.-P.; et al. Biocalcis and Its Applications for the Consolidation of Sands. In Proceedings of the Fourth International Conference on Grouting and Deep Mixing; Lawrence, F.J., Donald, A.B., Michael, J.B., Eds.; American Society of Civil Engineers: New Orleans, LA, USA, 2012; pp. 1767–1780. [Google Scholar]
- Ezzat, S.M.; Ewida, A.Y.I. Smart Soil Grouting Using Innovative Urease-Producing Bacteria and Low Cost Materials. J. Appl. Microbiol. 2021, 131, 2294–2307. [Google Scholar] [CrossRef] [PubMed]
- Chuangzhou, W.; Jian, C.; Liang, C.; Shifan, W.; Wu, C.; Chu, J.; Cheng, L.; Wu, S. Biogrouting of Aggregates Using Premixed Injection Method with or without PH Adjustment. J. Mater. Civ. Eng. 2019, 31, 6019008. [Google Scholar] [CrossRef]
- Tripathi, E.; Anand, K.; Goyal, S.; Reddy, M.S. Bacterial Based Admixed or Spray Treatment to Improve Properties of Concrete. Sādhanā 2019, 44, 19. [Google Scholar] [CrossRef]
- Raymond, A.J.; DeJong, J.T.; Gomez, M.G.; Kendall, A.; San Pablo, A.C.M.; Lee, M.; Graddy, C.M.R.; Nelson, D.C. Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques. Appl. Sci. 2025, 15, 1059. [Google Scholar] [CrossRef]
- Stabnikov, V.; Ivanov, V.; Chu, J. Construction Biotechnology: A New Area of Biotechnological Research and Applications. World J. Microbiol. Biotechnol. 2015, 31, 1303–1314. [Google Scholar] [CrossRef]
- Jalal, P.S.; Srivastava, V.; Tiwari, A.K. Geopolymer Concrete: An Alternative to Conventional Concrete for Sustainable Construction. J. Environ. Nanotechnol. 2025, 13, 218–225. [Google Scholar]
- Al Bakri, A.M.M.; Kamarudin, H.; Binhussain, M.; Nizar, I.K.; Rafiza, A.R.; Zarina, Y. Comparison of Geopolymer Fly Ash and Ordinary Portland Cement to the Strength of Concrete. Adv. Sci. Lett. 2013, 19, 3592–3595. [Google Scholar] [CrossRef]
- Sadeghpour, M.; Baradaran, M. Effect of Bacteria on the Self-Healing Ability of Fly Ash Concrete. Constr. Build. Mater. 2023, 364, 129956. [Google Scholar] [CrossRef]
- Stefaniak, K.; Wierzbicki, J.; Ksit, B.; Szymczak-Graczyk, A. Biocementation as a Pro-Ecological Method of Stabilizing Construction Subsoil. Energies 2023, 16, 2849. [Google Scholar] [CrossRef]
- Justo-Reinoso, I.; Arena, N.; Reeksting, B.J.; Gebhard, S.; Paine, K. Bacteria-Based Self-Healing Concrete− A Life Cycle Assessment Perspective. Dev. Built Environ. 2023, 16, 100244. [Google Scholar] [CrossRef]
- Kim, H.; Son, H.M.; Park, S.; Seo, J.; Lee, H.K. Effects of Temperature and Salinity on Concrete-Surface Treatment by Bacteria in Marine Environment. ACI Mater. J. 2020, 117, 57–65. [Google Scholar] [CrossRef]
Database | Search Query | Number of Documents Retrieved |
---|---|---|
Scopus | TITLE-ABS-KEY ((“concrete self healing” OR “self-healing concrete” OR “crack repair” OR “crack sealing” OR “self-repairing concrete” OR “structural crack repair” OR “microcrack repair” OR “crack filling” OR “crack closure” OR “self-repair” OR “self-healing material” OR “autonomous crack repair” OR “concrete crack biogrouting” OR “biological crack repair”) AND (“microbial induced carbonate precipitation” OR “MICP” OR “ureolytic bacteria” OR “urease-producing bacteria” OR “microbially induced calcite precipitation” OR “biogenic calcium carbonate precipitation” OR “microbial calcite precipitation” OR “bacterially induced carbonate precipitation” OR “biomineralization” OR “bacteria-induced calcite precipitation” OR “microbially mediated mineralization” OR “biocementation” OR “bacterial induced mineralization”)) | 372 |
WOS | TS = ((“concrete self healing” OR “self-healing concrete” OR “crack repair” OR “crack sealing” OR “self-repairing concrete” OR “structural crack repair” OR “microcrack repair” OR “crack filling” OR “crack closure” OR “self-repair” OR “self-healing material” OR “autonomous crack repair” OR “self-repairing material” OR “concrete crack biogrouting” OR “biological crack repair”) AND (“microbial induced carbonate precipitation” OR “MICP” OR “ureolytic bacteria” OR “urease-producing bacteria” OR “microbially induced calcite precipitation” OR “microbial induced calcium carbonate precipitation” OR “biogenic calcium carbonate precipitation” OR “microbial calcite precipitation” OR “bacterially induced carbonate precipitation” OR “mediated calcite precipitation” OR “biomineralization” OR “bacteria-induced calcite precipitation” OR “microbially mediated mineralization” OR “biocementation” OR “bacterial induced mineralization”)) | 257 |
Database | Author | Publication | Citation | H-Index | Affiliation | City and Country | Reference |
---|---|---|---|---|---|---|---|
Scopus | Xu, Jing | 11 | 596 | 7 | Tongji University | Shanghai, China | [73] |
De Belie, Nele | 10 | 799 | 9 | Ghent University | Ghent, Belgium | [63] | |
Bundur, Zeynep Basaran | 9 | 328 | 7 | Özyeğin Üniversitesi | Istanbul, Turkey | [74] | |
Gebhard, Susanne | 9 | 266 | 7 | Johannes Gutenberg-Universität Mainz | Mainz, Germany | [75] | |
Boon, Nico | 8 | 854 | 8 | University of Bath | Bath, England | [76] | |
Li, Zhu | 8 | 249 | 5 | Taiyuan University of Technology | Taiyuan, China | [77] | |
Paine, Kevin | 8 | 200 | 6 | University of Bath | Bath, England | [75] | |
Ferron, Raissa | 7 | 368 | 7 | The University of Texas at Austin | Austin, United States | [78] | |
Jiang, Lu | 7 | 225 | 5 | Ningxia University | Yinchuan, China | [77] | |
Park, Woojun | 7 | 367 | 7 | Korea University | Seoul, South Korea | [79] | |
WOS | Erşan, Yusuf Çağatay | 13 | 646 | 8 | Hacettepe University | Ankara, Türkiye | [63] |
Park, Woojun | 7 | 321 | 7 | Korea University | Seoul, South Korea | [79] | |
De Belie, Nele | 7 | 622 | 7 | Ghent University | Ghent, Belgium | [63] | |
Boon, Nico | 6 | 593 | 6 | Ghent University | Ghent, Belgium | [76] | |
Xu, Jing | 6 | 430 | 6 | Tongji University | Shanghai, China | [73] | |
Gebhard, Susanne | 6 | 145 | 5 | University of Bath | Bath, England | [75] | |
Bundur, Zeynep Basaran | 5 | 191 | 4 | Ozyegin University | Istanbul, Türkiye | [74] | |
Paine, Kevin | 5 | 89 | 5 | University of Bath | Bath, England | [75] | |
Li, Zhu | 5 | 201 | 4 | Taiyuan University of Technology | Taiyuan, China | [77] | |
Millra, Jose | 4 | 32 | 3 | Louisiana Transportation Research Center | Louisiana, United States | [80] |
Database | Journals | Publications | Citations | H-Index | Publisher | CiteScore 2023 | Highest Cited Article |
---|---|---|---|---|---|---|---|
Scopus | Construction and Building Materials | 44 | 2045 | 25 | Elsevier | 13.8 | [39] |
Journal of Building Engineering | 25 | 342 | 10 | Elsevier | 10 | [40] | |
Cement and Concrete Composites | 15 | 557 | 10 | Elsevier | 18.7 | [60] | |
Materials Today Proceedings | 15 | 211 | 7 | Elsevier | 4.9 | [81] | |
Materials | 14 | 356 | 8 | Multidisciplinary Digital Publishing Institute (MDPI) | 5.8 | [82] | |
Applied Microbiology and Biotechnology | 9 | 826 | 7 | Springer Nature | 10 | [83] | |
Journal of Materials in Civil Engineering | 8 | 69 | 3 | American Society of Civil Engineers | 5.8 | [84] | |
Sustainability | 7 | 45 | 5 | Multidisciplinary Digital Publishing Institute (MDPI) | 6.8 | [85] | |
Case Studies in Construction Materials | 6 | 39 | 3 | Elsevier | 7.6 | [86] | |
Lecture Notes in Civil Engineering | 6 | 10 | 2 | Springer Nature | 0.8 | [87] | |
WOS | Construction and Building Materials | 42 | 1937 | 24 | Elsevier | 7.4 | [39] |
Journal of Building Engineering | 13 | 141 | 5 | Elsevier | 6.7 | [40] | |
Cement Concrete Composites | 12 | 457 | 8 | Elsevier | 10.8 | [60] | |
Materials | 11 | 269 | 6 | Multidisciplinary Digital Publishing Institute (MDPI) | 3.1 | [82] | |
Applied Microbiology and Biotechnology | 9 | 667 | 6 | Springer Nature | 3.9 | [83] | |
Materials Today Proceedings | 9 | 140 | 5 | Elsevier | nil | [81] | |
Sustainability | 8 | 38 | 5 | Multidisciplinary Digital Publishing Institute (MDPI) | 3.3 | [85] | |
Case Studies in Construction Materials | 6 | 18 | 3 | Elsevier | 6.5 | [86] | |
Journal of Sustainable Cement Based Materials | 6 | 66 | 4 | Taylor and Francis | 4.3 | [41] | |
European Journal of Environmental and Civil Engineering | 4 | 22 | 3 | Taylor and Francis | 2.2 | [59] |
Database | Label | Cluster | Links | Total Link Strength | Occurrences |
---|---|---|---|---|---|
Scopus | self-healing | 2 | 41 | 191 | 99 |
self-healing concrete | 4 | 35 | 126 | 72 | |
biomineralization | 5 | 38 | 158 | 67 | |
micp | 6 | 36 | 104 | 57 | |
bacteria | 6 | 32 | 132 | 55 | |
concrete | 5 | 30 | 97 | 41 | |
calcium carbonate | 6 | 25 | 79 | 28 | |
compressive strength | 7 | 25 | 48 | 23 | |
crack repair | 5 | 22 | 45 | 21 | |
crack | 9 | 13 | 44 | 18 | |
WOS | self-healing concrete | 2 | 25 | 84 | 59 |
micp | 4 | 27 | 89 | 50 | |
self-healing | 1 | 33 | 107 | 48 | |
biomineralization | 3 | 30 | 104 | 46 | |
bacteria | 5 | 24 | 94 | 40 | |
concrete | 3 | 21 | 68 | 29 | |
calcium carbonate | 4 | 27 | 69 | 27 | |
compressive strength | 2 | 17 | 27 | 16 | |
crack repair | 4 | 17 | 35 | 15 | |
biocementation | 1 | 17 | 28 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoregie, A.I.; Wong, C.S.; Rajasekar, A.; Ling, J.H.; Laiche, A.B.; Basri, H.F.; Sivakumar, G.; Ouahbi, T. Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing. Buildings 2025, 15, 1052. https://doi.org/10.3390/buildings15071052
Omoregie AI, Wong CS, Rajasekar A, Ling JH, Laiche AB, Basri HF, Sivakumar G, Ouahbi T. Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing. Buildings. 2025; 15(7):1052. https://doi.org/10.3390/buildings15071052
Chicago/Turabian StyleOmoregie, Armstrong Ighodalo, Chih Siong Wong, Adharsh Rajasekar, Jen Hua Ling, Abdelfatah Bousbia Laiche, Hazlami Fikri Basri, Gowthaman Sivakumar, and Tariq Ouahbi. 2025. "Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing" Buildings 15, no. 7: 1052. https://doi.org/10.3390/buildings15071052
APA StyleOmoregie, A. I., Wong, C. S., Rajasekar, A., Ling, J. H., Laiche, A. B., Basri, H. F., Sivakumar, G., & Ouahbi, T. (2025). Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing. Buildings, 15(7), 1052. https://doi.org/10.3390/buildings15071052