Study on the Influence of Water Content on the Shear Behavior of the Soil–Structure Interface Under a Temperature Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials and Test Apparatus
2.2. Experimental Scheme
3. Results
3.1. Effect of wbent on τ-l Relationship of Interface
3.2. Effect of wbent on Shear Strength of Interface
3.3. Effect of Water Content on Interface c and φ Values
4. Results Analysis and Discussions
4.1. Mechanistic Analysis of Shear Surface Properties Affected by wbent
4.2. Mechanistic Analysis of the Effect of Temperature Change on Interfacial Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Wang, C.; Bouazza, A.; Kong, G.; Ding, X. Thermal performance of pipe-type energy piles with open-ended heat exchange tubes. Appl. Therm. Eng. 2025, 258, 124573. [Google Scholar] [CrossRef]
- Mohamad, Z.; Fardoun, F.; Meftah, F. A review on energy piles design, evaluation, and optimization. J. Clean. Prod. 2021, 292, 125802. [Google Scholar] [CrossRef]
- Laloui, L.; Sutman, M. Experimental investigation of energy piles: From laboratory to field testing. Géoméch. Energy Environ. 2021, 27, 100214. [Google Scholar] [CrossRef]
- Wu, D.; Liu, H.; Kong, G.; Li, C. Thermo-mechanical behavior of energy pile under different climatic conditions. Acta Geotech. 2019, 14, 1495–1508. [Google Scholar] [CrossRef]
- Amatya, B.L.; Soga, K.; Bourne-Webb, P.J.; Amis, T.; Laloui, L. Thermo-mechanical behaviour of energy piles. Géotechnique 2015, 62, 503–519. [Google Scholar] [CrossRef]
- Hamada, Y.; Saitoh, H.; Nakamura, M.; Kubota, H.; Ochifuji, K. Field performance of an energy pile system for space heating. Energy Build. 2007, 39, 517–524. [Google Scholar] [CrossRef]
- Bourne-Webb, P.; Burlon, S.; Javed, S.; Kürten, S.; Loveridge, F. Analysis and design methods for energy geostructures. Renew. Sustain. Energy Rev. 2016, 65, 402–419. [Google Scholar] [CrossRef]
- Laloui, L.; Moreni, M.; Vulliet, L. Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur. Can. Geotech. J. 2003, 40, 388–402. [Google Scholar] [CrossRef]
- Wu, W.; Di, T.; Yang, X.; El Naggar, M.H.; Zhang, Y. Revised pile-pile mutual interaction factors for seismic analysis of end-bearing pile groups em-bedded in saturated stratum. Soil Dyn. Earthq. Eng. (1984) 2024, 182, 108745. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, H.; Zhang, L.; El Naggar, M.H.; Wu, W. Identification of bored pile defects utilizing torsional low strain integrity test: Theoretical basis and numerical analysis. J. Rock Mech. Geotech. Eng. 2024; in press. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, J.; Tong, H.; Fang, Y.; Gu, R. Mechanism study on the soil mechanical behavior of the mixed soil based on energy multi-scale method. Front. Mater. 2023, 10, 1270865. [Google Scholar] [CrossRef]
- Kong, G.; Chang, H.; Wu, D.; Peng, H.; Shen, Y.; Abuel-Naga, H. Effects of pile configuration on the group behavior of semi-floating energy piles. J. Build. Eng. 2023, 77, 107487. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Islam, R. Effects of water content and interface roughness on the shear strength of silt–cement mortar interface. Soils Found. 2021, 61, 1615–1629. [Google Scholar] [CrossRef]
- Di Donna, A.; Ferrari, A.; Laloui, L. Experimental investigations of the soil-concrete interface: Physical mechanisms, cyclic mobilisation and behaviour at different temperatures. Can. Geotech. J. 2016, 53, 659–672. [Google Scholar] [CrossRef]
- Yavari, N.; Tang, A.M.; Pereira, J.M.; Hassen, G. Effect of temperature on the shear strength of soils and the soil–structure interface. Can. Geotech. J. 2016, 53, 1186–1194. [Google Scholar] [CrossRef]
- Li, C.; Kong, G.; Liu, H.; Abuel-Naga, H. Effect of temperature on behaviour of red clay–structure interface. Can. Geotech. J. 2019, 56, 126–134. [Google Scholar] [CrossRef]
- Maghsoodi, S.; Cuisinier, O.; Masrouri, F. Thermal effects on mechanical behaviour of soil–structure interface. Can. Geotech. J. 2020, 57, 32–47. [Google Scholar] [CrossRef]
- Sun, M.; Wu, S.; Wang, T.; Xie, Y.; Xu, M.; Dong, Y.; Zhao, D.; Wu, W. Thermo-Mechanical Coupling Load Transfer Method of Energy Pile Based on Hyperbolic Tangent Model. Buildings 2024, 14, 3190. [Google Scholar] [CrossRef]
- Golchin, A.; Guo, Y.; Vardon, P.J.; Liu, S.; Zhang, G.; Hicks, M.A. Shear creep behaviour of soil–structure interfaces under thermal cyclic loading. Geotech. Lett. 2023, 13, 22–28. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, C. A thermo-mechanical model for saturated and unsaturated soil–structure interfaces. Can. Geotech. J. 2024, 61, 2615–2631. [Google Scholar] [CrossRef]
- Yin, K.; Fauchille, A.-L.; Vasilescu, R.; Dano, C.; Kotronis, P.; Sciarra, G. Influence of clay fraction on the shear behavior of an interface between sand-clay mixture and concrete. Géoméch. Energy Environ. 2024, 38, 100543. [Google Scholar] [CrossRef]
- Vieira, A.; Alberdi-Pagola, M.; Christodoulides, P.; Javed, S.; Loveridge, F.; Nguyen, F.; Cecinato, F.; Maranha, J.; Florides, G.; Prodan, I.; et al. Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications. Energies 2017, 10, 2044. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal Properties of Soils; US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1981. [Google Scholar]
- Hellström, G. Ground Heat Storage: Thermal Analyses of Duct Storage Systems. Ph.D Thesis, Lund University, Lund, Sweden, 1991. [Google Scholar]
- Fuentes, R.; Pinyol, N.; Alonso, E. Effect of temperature induced excess porewater pressures on the shaft bearing ca-pacity of geothermal piles. Geomech. Energy Environ. 2016, 8, 30–37. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Ozudogru, T.Y. Non-uniform thermal strains and stresses in energy piles. Environ. Geotech. 2016, 3, 237–252. [Google Scholar] [CrossRef]
- Gawecka, K.A.; Taborda, A.D.M.G. Numerical modelling of thermo-active piles in London Clay. Geotech. Eng. 2017, 170, 201–219. [Google Scholar] [CrossRef]
- Bourne-Webb, P.J.; Bodas Freitas, T.M.; Freitas Assunção, R.M. A review of pile-soil interactions in isolated, thermally-activated piles. Comput. Geotech. 2019, 108, 61–74. [Google Scholar] [CrossRef]
- Sailer, E.; Taborda, D.M.; Zdravković, L.; Potts, D.M.; Cui, W. Thermo-hydro-mechanical interactions in porous media: Implications on thermo-active retaining walls. Comput. Geotech. 2021, 135, 104121. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lv, M.-F.; Guo, Y.-C.; Huang, M.-S. Effects of the soil water content and relative roughness on the shear strength of silt and steel plate interface. Meas. J. Int. Meas. Confed. 2021, 174, 109003. [Google Scholar] [CrossRef]
- Lin, C.; Wang, G.; Guan, C.; Feng, D.; Zhang, F. Experimental study on the shear characteristics of different pile-soil interfaces and the in-fluencing factors. Cold Reg. Sci. Technol. 2023, 206, 103739. [Google Scholar] [CrossRef]
- Kou, H.; Sun, Y.; Chen, Q.; Huang, J.; Zhang, X. Shear behavior of cold region clay-concrete interface under temperature-controlled direct shear tests. J. Build. Eng. 2024, 98, 111203. [Google Scholar] [CrossRef]
- Azhar, M.; Mondal, S.; Tang, A.M.; Singh, A.K. Effect of temperature on the mechanical properties of fine-grained soils—A review. Geothermics 2024, 116, 102863. [Google Scholar] [CrossRef]
- Wei, S.; Abdelaziz, S.L. Temperature Effects on the Thickness of the Diffused Double Layer Using Molecular Dynamics. In Proceedings of the Geo-Congress 2022, Charlotte, NC, USA, 20–23 March 2022. [Google Scholar]
- Chen, J.; Tong, H.; Yuan, J.; Fang, Y.; Gu, R. Permeability Prediction Model Modified on Kozeny-Carman for Building Foundation of Clay Soil. Buildings 2022, 12, 1798. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Z.; Xiao, H.; Zheng, L.; Li, W.; Song, X. Thermal-mechanical behavior of deeply buried pipe energy pile group in sand obtained from model test. Appl. Therm. Eng. 2024, 261, 125078. [Google Scholar] [CrossRef]
- ASTM D3080/D3080M-23; Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2023.
- Wei, Y.; Wu, X.; Xia, J.; Miller, G.A.; Cai, C.; Guo, Z.; Hassanikhah, A. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Tillage Res. 2019, 187, 50–59. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Tan, J.; Yang, L.; Ou, L.; Duan, X.; Deng, Y. Effect of the moisture content and dry density on the shear strength parameters of collapsing walls in hilly granite areas of South China. Int. Soil Water Conserv. Res. 2024, 12, 697–713. [Google Scholar] [CrossRef]
- Fasinmirin, J.T.; Olorunfemi, I.E.; Olakuleyin, F. Strength and hydraulics characteristics variations within a tropical Alfisol in Southwestern Nigeria under different land use management. Soil Tillage Res. 2018, 182, 45–56. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Zou, X.; Tian, J.; Liu, B.; Li, J.; Kang, L.; Chen, H.; Wu, Y. Estimation of surface shear strength of undisturbed soils in the eastern part of northern China’s wind erosion area. Soil Tillage Res. 2018, 178, 1–10. [Google Scholar] [CrossRef]
- Alonso, E.; Pereira, J.-M.; Vaunat, J.; Olivella, S. A microstructurally based effective stress for unsaturated soils. Géotechnique 2010, 60, 913–925. [Google Scholar] [CrossRef]
- Horn, R. Stress—Strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma 2003, 116, 77–88. [Google Scholar] [CrossRef]
- Al-Shayea, N.A. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Eng. Geol. 2001, 62, 319–342. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S.; Yu, S.; Cai, H.; Zhai, J. Experimental investigation on the temperature-dependent shear strength of frozen coarse-grained soil-rock interfaces by considering three-dimensional roughness. Transp. Geotech. 2024, 49, 101434. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Zhu, K.; Shen, P. Macroscopic behaviour and mesoscopic mechanism of shear strength characteristics of pile-soil interface under cyclic loading. Ocean Eng. 2024, 297, 116998. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, G. Influence of normal stress on the shear strength of the structural plane considering the size effect. Front. Earth Sci. 2023, 11, 1116302. [Google Scholar] [CrossRef]
- Pan, W.; Jiang, H.; Chen, J. The effect of temperature on shear characteristics of interface between sand and concrete considering the fine-grained soil content. Arab. J. Geosci. 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Shi, Y.; Li, S.; Zhang, T.; Liu, J.; Zhang, J. Compaction and shear performance of lime-modified high moisture content silty clay. Case Stud. Constr. Mater. 2024, 21, e3529. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Zhang, S.; Pei, H.; Plötze, M.; Ying, H. Molecular dynamics modeling of hydraulic conductivity of soil considering variable viscosity and adsorbed water. Appl. Clay Sci. 2022, 228, 106598. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Q.; Qiao, L. Response of energy pile-soil structure and pile group effect: An indoor similarity simulation study. J. Build. Eng. 2022, 51, 104247. [Google Scholar] [CrossRef]
Mineral Composition | Content/% | Parameter | Value |
---|---|---|---|
Montmorillonite | 91.7 | Specific gravity | 2.61 |
Square quartz | 3.9 | Plastic limit wp | 54.2% |
Sodium carbonate | 2.0 | Liquid limit wl | 158.4% |
Zeolite | 1.7 | Plasticity index Ip | 104.2 |
Quartz | 0.8 | Average diameter | 0.015 mm |
No. | wbent (%) | Mbent/Msand | n | T (°C) | P (kPa) |
---|---|---|---|---|---|
T1ij | 40 | 20% | 0.32 | 20, 30, 40, 50, 60 | 12.5, 25, 37.5, 50 |
T2ij | 55 | 20% | 0.32 | 20, 30, 40, 50, 60 | 12.5, 25, 37.5, 50 |
T3ij | 70 | 20% | 0.32 | 20, 30, 40, 50, 60 | 12.5, 25, 37.5, 50 |
T4ij | 85 | 20% | 0.32 | 20, 30, 40, 50, 60 | 12.5, 25, 37.5, 50 |
T5ij | 100 | 20% | 0.32 | 20, 30, 40, 50, 60 | 12.5, 25, 37.5, 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jiang, H.; Liu, Y.; Wu, Y.; Zhang, X.; Pan, W. Study on the Influence of Water Content on the Shear Behavior of the Soil–Structure Interface Under a Temperature Field. Buildings 2025, 15, 1. https://doi.org/10.3390/buildings15010001
Chen J, Jiang H, Liu Y, Wu Y, Zhang X, Pan W. Study on the Influence of Water Content on the Shear Behavior of the Soil–Structure Interface Under a Temperature Field. Buildings. 2025; 15(1):1. https://doi.org/10.3390/buildings15010001
Chicago/Turabian StyleChen, Jian, Hao Jiang, Yongde Liu, Yanting Wu, Xuan Zhang, and Weidong Pan. 2025. "Study on the Influence of Water Content on the Shear Behavior of the Soil–Structure Interface Under a Temperature Field" Buildings 15, no. 1: 1. https://doi.org/10.3390/buildings15010001
APA StyleChen, J., Jiang, H., Liu, Y., Wu, Y., Zhang, X., & Pan, W. (2025). Study on the Influence of Water Content on the Shear Behavior of the Soil–Structure Interface Under a Temperature Field. Buildings, 15(1), 1. https://doi.org/10.3390/buildings15010001