# Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modelling of Preliminary Compaction Based on FEM-DEM Coupled Method

#### 2.1. Creation of the Different Parts of the Model

^{−9}ton/mm

^{3}, and the Young’s modulus and Poisson’s ratio were set to 20,800 MPa and 0.3, respectively.

#### 2.2. Assembly of the Different Parts and Their Interaction

#### 2.3. Definition of the Computational Steps and Boundary Conditions

## 3. Results and Discussion

#### 3.1. Illustration of the Paving Process

#### 3.2. Effect of the Gradation of Asphalt Mixtures on the Paving Process

#### 3.3. Effect of the Paving Speed on the Paving Process

## 4. Conclusions and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Mo, L.; Li, X.; Fang, X.; Huurman, M.; Wu, S. Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives. Constr. Build. Mater.
**2012**, 37, 239–247. [Google Scholar] [CrossRef] - Liu, P.; Wang, C.; Otto, F.; Hu, J.; Moharekpour, M.; Wang, D.; Oeser, M. Numerical simulation of asphalt compaction and asphalt performance. In Coupled System Pavement-Tire-Vehicle; Springer: Cham, Switzerland, 2021; pp. 41–81. [Google Scholar]
- Jia, J.; Liu, H.; Wan, Y.; Qi, K. Impact of vibration compaction on the paving density and transverse uniformity of hot paving layer. Int. J. Pavement Eng.
**2020**, 21, 289–303. [Google Scholar] [CrossRef] - AC 150/5370-14A; Hot-Mix Asphalt Paving Handbook 2000. US Army Corps of Engineers: Washington, DC, USA, 2000.
- Nabawy, B.S.; David, C. X-ray CT scanning imaging for the Nubia sandstone as a tool for characterizing its capillary properties. Geosci. J.
**2016**, 20, 691–704. [Google Scholar] [CrossRef] - Zhang, C.; Wang, H.; You, Z.; Yang, X. Compaction characteristics of asphalt mixture with different gradation type through Superpave Gyratory Compaction and X-ray CT Scanning. Constr. Build. Mater.
**2016**, 129, 243–255. [Google Scholar] [CrossRef] - Sully-Miller Contraction, C.O. A Summary of Operational Differences between Nuclear and Non-Nuclear Density Measuring Instruments; TransTech Systems, Inc.: Schenectady, NY, USA, 2000; Volume 5. [Google Scholar]
- Van den Bergh, W.; Jacobs, G.; De Maeijer, P.K.; Vuye, C.; Arimilli, S.; Couscheir, K.; Lauriks, L.; Baetens, R.; Severins, I.; Margaritis, A.; et al. Demonstrating innovative technologies for the Flemish asphalt sector in the CyPaTs project. IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 471, 022031. [Google Scholar] [CrossRef] - Shangguan, P.; Al-Qadi, I.L.; Leng, Z.; Schmitt, R.L.; Faheem, A. Innovative approach for asphalt pavement compaction monitoring with ground-penetrating radar. Transp. Res. Rec.
**2013**, 2347, 79–87. [Google Scholar] [CrossRef] - Daniels, D.J. Ground Penetrating Radar; Knoval, Institution of Engineering and Technology: New York, NY, USA, 2004; pp. 1–4. ISBN 978-0-86341-360-5. [Google Scholar]
- Leng, Z.; Al-Qadi, I.L.; Lahouar, S. Development and validation for in situ asphalt mixture density prediction models. NDT E Int.
**2011**, 44, 369–375. [Google Scholar] [CrossRef] - Zhao, S.; Al-Qadi, I.L. Algorithm development for real-time thin asphalt concrete overlay compaction monitoring using ground-penetrating radar. NDT E Int.
**2019**, 104, 114–123. [Google Scholar] [CrossRef] - Wang, H.; Wang, C.; You, Z.; Yang, X.; Huang, Z. Characterising the asphalt concrete fracture performance from X-ray CT Imaging and finite element modelling. Int. J. Pavement Eng.
**2018**, 19, 307–318. [Google Scholar] [CrossRef] - Xiao, M.; Reddi, L.N.; Steinberg, S.L. Variation of water retention characteristics due to particle rearrangement under zero gravity. Int. J. Geomech.
**2009**, 9, 179–186. [Google Scholar] [CrossRef] [Green Version] - Liu, P.; Xu, H.; Wang, D.; Wang, C.; Schulze, C.; Oeser, M. Comparison of mechanical responses of asphalt mixtures manufactured by different compaction methods. Constr. Build. Mater.
**2018**, 162, 765–780. [Google Scholar] [CrossRef] - Chen, J.; Huang, B.; Shu, X. Air-void distribution analysis of asphalt mixture using discrete element method. J. Mater. Civ. Eng.
**2013**, 25, 1375–1385. [Google Scholar] [CrossRef] - Qian, G.; Hu, K.; Li, J.; Bai, X.; Li, N. Compaction process tracking for asphalt mixture using discrete element method. Constr. Build. Mater.
**2020**, 235, 117478. [Google Scholar] [CrossRef] - Wang, L.; Zhang, B.; Wang, D.; Yue, Z. Fundamental mechanics of asphalt compaction through FEM and DEM modeling. Anal. Asph. Pavement Mater. Syst. Eng. Methods
**2007**, 45–63. [Google Scholar] [CrossRef] - Shao, Y.U. Coupling analysis of FEM/DEM for whole failure process of rock slope and its engineering application. J. Shanghai Jiaotong Univ.
**2013**, 47, 1611. [Google Scholar] - Guo, N.; Zhao, J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int. J. Numer. Methods Eng.
**2014**, 99, 789–818. [Google Scholar] [CrossRef] [Green Version] - Du, B.; Zhao, C.; Dong, G.; Bi, J. FEM-DEM coupling analysis for solid granule medium forming new technology. J. Mater. Processing Technol.
**2017**, 249, 108–117. [Google Scholar] [CrossRef] - Orosz, Á.; Zwierczyk, P.T. Analysis of the stress state of a railway sleeper using coupled FEM-DEM simulation. In ECMS; CRC Press: Boca Raton, FL, USA, 2020; pp. 261–265. ISBN 978-1-4665-8020-6. [Google Scholar]
- Khennane, A. Introduction to Finite Element Analysis Using MATLAB
^{®}and Abaqus; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] - Systèmes, D. Abaqus Analysis User’s Guide (6.14); Abaqus FEA: Providence, RI, USA, 2014. [Google Scholar]
- Hertz, H. On the contact of solids—on the contact of rigid elastic solids and on hardness. In Miscellaneous Papers; Macmillan and Co.: New York, NY, USA, 1896; pp. 146–183. [Google Scholar]
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci.
**1971**, 324, 301–313. [Google Scholar] - Wang, X.; Shen, S.; Huang, H.; Almeida, L.C. Characterization of particle movement in Superpave gyratory compactor at meso-scale using SmartRock sensors. Constr. Build. Mater.
**2018**, 175, 206–214. [Google Scholar] [CrossRef] - Wang, C.; Moharekpour, M.; Liu, Q.; Zhang, Z.; Liu, P.; Oeser, M. Investigation on asphalt-screed interaction during pre-compaction: Improving paving effect via numerical simulation. Constr. Build. Mater.
**2021**, 289, 123164. [Google Scholar] [CrossRef] - Golalipour, A.; Jamshidi, E.; Niazi, Y.; Afsharikia, Z.; Khadem, M. Effect of aggregate gradation on rutting of asphalt pavements. Procedia Soc. Behav. Sci.
**2012**, 53, 440–449. [Google Scholar] [CrossRef] [Green Version] - Jin, C.; Zhang, W.; Liu, P.; Yang, X.; Oeser, M. Morphological simplification of asphaltic mixture components for micromechanical simulation using finite element method. Comput. Aided Civ. Infrastruct. Eng.
**2021**, 36, 1435–1452. [Google Scholar] [CrossRef] - Jin, C.; Wan, X.; Liu, P.; Yang, X.; Oeser, M. Stability prediction for asphalt mixture based on evolutional characterization of aggregate skeleton. Comput. Aided Civ. Infrastruct. Eng.
**2021**, 36, 1453–1466. [Google Scholar] [CrossRef]

**Figure 5.**Three steps of this model: (

**a**) The beginning of step 1 (t = 0); (

**b**) The end of step 1, the beginning of step 2 (t = 2 s); (

**c**) The end of step 2, the beginning of step 3 (t = 3 s); (

**d**) The end of step 3 (t = 6 s).

**Figure 6.**Angular velocity of different mixtures: (

**a**) AC 11 in X-direction; (

**b**) PA 11 in X-direction.

**Figure 7.**Angular velocity of different mixtures: (

**a**) AC 11 in Y-direction; (

**b**) PA 11 in Y-direction.

**Figure 8.**Angular velocity of different mixtures: (

**a**) AC 11 in Z-direction; (

**b**) PA 11 in Z-direction.

**Figure 10.**Angular velocity of AC 11 aggregate with a paving speed of 4 m/min: (

**a**) in X-direction; (

**b**) in Y-direction; (

**c**) in Z-direction; (

**d**) combined angular velocity.

**Figure 11.**Angular velocity of AC 11 aggregate with a paving speed of 5 m/min: (

**a**) in X-direction; (

**b**) in Y-direction; (

**c**) in Z-direction; (

**d**) combined angular velocity.

**Figure 12.**Angular velocity of AC 11 aggregate with a paving speed of 6 m/min: (

**a**) in X-direction; (

**b**) in Y-direction; (

**c**) in Z-direction; (

**d**) combined angular velocity.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, P.; Wang, C.; Lu, W.; Moharekpour, M.; Oeser, M.; Wang, D.
Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements. *Buildings* **2022**, *12*, 932.
https://doi.org/10.3390/buildings12070932

**AMA Style**

Liu P, Wang C, Lu W, Moharekpour M, Oeser M, Wang D.
Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements. *Buildings*. 2022; 12(7):932.
https://doi.org/10.3390/buildings12070932

**Chicago/Turabian Style**

Liu, Pengfei, Chonghui Wang, Wei Lu, Milad Moharekpour, Markus Oeser, and Dawei Wang.
2022. "Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements" *Buildings* 12, no. 7: 932.
https://doi.org/10.3390/buildings12070932