# Characterization of the Hot Anode Paste Compaction Process: A Computational and Experimental Study

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Constitutive Law

## 3. Experimental Study

## 4. Inverse Identification and Numerical Simulations

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Gunasegaram, D.R.; Molenaar, D. Towards improved energy efficiency in the electrical connections of Hall-Héroult cells through FEA modeling. J. Clean. Prod.
**2017**, 93, 174–192. [Google Scholar] [CrossRef] - Gates, D. Modelling and Simulation of a Vibroformer for Carbon Anodes Used in Aluminium Production. Mathematics in Industry, 1992. Available online: http://www.maths-in-industry.org/miis/459/ (accessed on 7 March 2019).
- Rebaine, F. Étude de L’influence des Paramètres de Vibro-Compaction sur les Propriétés Mécaniques des Anodes en Carbone. Ph.D. Thesis, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada, 2015. [Google Scholar]
- Majidi, B.; Azari, K.; Alamdari, H.; Fafard, M.; Ziegler, D. Simulation of vibrated bulk density of anode-grade coke particle using discrete element method. Powder Technol.
**2014**, 261, 154–160. [Google Scholar] [CrossRef] - Majidi, B.; Melo, J.; Fafard, M.; Ziegler, D.; Alamdari, H. Packing density of irregular shape particles: DEM simulations applied to anode-grade coke aggregates. Adv. Powder Technol.
**2015**, 26, 1256–1262. [Google Scholar] [CrossRef] - Chaouki, H.; Picard, D.; Ziegler, D.; Azari, K.; Alamdari, H.; Fafard, M. Viscoplastic Modeling of the Green Anode Paste Compaction Process. J. Appl. Mech.
**2015**, 83, 021002. [Google Scholar] [CrossRef] - Koneru, S.; Masad, E.; Rajagopal, K.R. A thermomechanical framework for modeling the compaction of asphalt mixes. Mech. Mater.
**2008**, 40, 846–864. [Google Scholar] [CrossRef] - Brulin, J.; Rekik, A.; Josserand, L.; Blond, E.; Gasser, A.; Roulet, F. Characterization and modelling of a carbon ramming mix used in high-temperature industry. Int. J. Solids Struct.
**2011**, 48, 854–864. [Google Scholar] [CrossRef] [Green Version] - Gonzalez, J.M.; Canet, J.M.; Oller, S.; Miro, R. A viscoplastic constitutive model with strain rate variables for asphalt mixtures-numerical simulation. Comput. Mater. Sci.
**2007**, 38, 543–560. [Google Scholar] [CrossRef] - Masad, E.; Tashman, L.; Little, D.; Zbib, H. Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mech. Mater.
**2005**, 37, 1242–1256. [Google Scholar] [CrossRef] - Levenberg, E. Viscoplastic response and modeling of asphalt-aggregate mixes. Mater. Struct.
**2008**, 42, 1139–1151. [Google Scholar] [CrossRef] - Rajagopal, K.R. Multiple Configurations in Continuum Mechanics; Report (6); Institute of Computational and Applied Mechanics, University of Pittsburgh: Pittsburgh, PA USA, 1995. [Google Scholar]
- Lemaitre, J.; Chaboche, J.-L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Bonet, J.; Woods, R.D. Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Azari, K.; Alamdari, H.; Aryanpour, G.; Picard, D.; Fafard, M.; Adams, A. Mixing variables for prebaked anodes used in aluminum production. Powder Technol.
**2013**, 235, 341–348. [Google Scholar] [CrossRef] - Thibodeau, S. Caractérisation des Propriétés Mécaniques de la pâte de Carbone à 150 °C dans le But D’optimiser la Mise en Forme des Anodes Utilisées dans les Cuves Hall-Héroult. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2016. [Google Scholar]
- Bazergui, A.; Bui-Quoc, T.; Biron, A.; McIntyre, G.; Laberge, C. Résistance des Matériaux, 3rd ed.; Presses Internationales Polytechnique: Montréal, QC, Canada, 2003. [Google Scholar]
- Adams, A.N.; Karacan, O.; Grader, A.; Mathews, J.P.; Halleck, P.M.; Schobert, H.H. The non-destructive 3-D characterization of pre-backed carbon anodes using X-ray computerized tomography. In Light Metals; Wiley-TMS: Seattle, WA, USA, 2002; pp. 535–539. [Google Scholar]
- Picard, D.; Alamdari, H.; Ziegler, D.; Dumas, B.; Fafard, M. Characterization of pre-backed carbon anode samples using X-ray computed tomography and porosity estimation. In Light Metals; Springer International Publishing: Orlando, FL, USA, 2012; pp. 1283–1288. [Google Scholar]
- Abaqus. Abaqus 6.10 Theory Manual; Abaqus Inc.: Providence, RI, USA, 2010. [Google Scholar]

**Figure 12.**Mean distribution of the density along the radial axis for the sample with the circular slot.

**Figure 14.**Mean distribution of the density along the radial axis for the sample with the stub hole.

**Figure 27.**Density profile along the radius (stub hole): experiment vs. finite element result (h = 40 mm).

**Figure 28.**Density profile along the radius (stub hole): experiment vs. finite element result (h = 60 mm).

**Figure 29.**Density profile along the radius (stub hole): experiment vs. finite element result (h = 80 mm).

**Figure 30.**Density profile along the radius (slot): experiment vs. finite element result (h = 30 mm).

**Figure 31.**Density profile along the radius (slot): experiment vs. finite element result (h = 45 mm).

**Figure 32.**Density profile along the radius (slot): experiment vs. finite element result (h = 70 mm).

Aggregates Size | Content (%) | Mass (g) |
---|---|---|

−4 + 8 | 17.9 | 1072.6 |

−8 + 14 | 8.1 | 487.1 |

−14 + 28 | 9.4 | 565.8 |

−28 + 48 | 10.3 | 619.9 |

−48 + 100 | 7.5 | 447.7 |

−100 + 200 | 8.7 | 521.5 |

Fines | 20.1 | 1205.4 |

Pitch | 18.0 | 1080.0 |

Total | 100 | 6000.0 |

$\mathsf{\mu}(.)$ | $\mathsf{\eta}(.)$ | $\mathsf{\lambda}(.)$ | |||||||

$\widehat{\mathsf{\mu}}$ | ${\mathsf{\lambda}}_{1}$ | ${\mathrm{n}}_{1}$ | ${\mathrm{q}}_{1}$ | $\widehat{\mathsf{\eta}}$ | ${\mathsf{\lambda}}_{2}$ | ${\mathrm{n}}_{2}$ | ${\mathrm{q}}_{2}$ | $\mathsf{\alpha}$ | $\mathsf{\beta}$ |

$1.2\times {10}^{4}$ | $4$ | $-2.8$ | $2$ | $1.65\times {10}^{6}$ | $0.4$ | $-5.9$ | $1.9$ | $3.5\times {10}^{3}$ | $0.033$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chaouki, H.; Thibodeau, S.; Fafard, M.; Ziegler, D.; Alamdari, H.
Characterization of the Hot Anode Paste Compaction Process: A Computational and Experimental Study. *Materials* **2019**, *12*, 800.
https://doi.org/10.3390/ma12050800

**AMA Style**

Chaouki H, Thibodeau S, Fafard M, Ziegler D, Alamdari H.
Characterization of the Hot Anode Paste Compaction Process: A Computational and Experimental Study. *Materials*. 2019; 12(5):800.
https://doi.org/10.3390/ma12050800

**Chicago/Turabian Style**

Chaouki, Hicham, Stéphane Thibodeau, Mario Fafard, Donald Ziegler, and Houshang Alamdari.
2019. "Characterization of the Hot Anode Paste Compaction Process: A Computational and Experimental Study" *Materials* 12, no. 5: 800.
https://doi.org/10.3390/ma12050800