Transmission of Plasticity Through Grain Boundaries in a Metastable Austenitic Stainless Steel
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Substructure Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taheri, S.; Hauet, A.; Taleb, L.; Kpodekon, C. Micro–macro investigations about the fatigue behavior of pre-hardened 304L steel. Int. J. Plast. 2011, 27, 1981–2004. [Google Scholar] [CrossRef]
- Santacreu, P.-O.; Glez, J.C.; Roulet, N.; Fröhlich, T.; Grosbety, Y. Austenitic Stainless Steels for Automotive Structural Parts. SAE Trans. 2006, 115, 805–810. [Google Scholar]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Tavares, S.M.; Pardal, J.M.; Gomes, M.J.; Abreu, H.F.G.; Silva, M.R. Deformation induced martensitic transformation in a 201 modified austenitic stainless steel. Mater. Charact. 2009, 60, 907–911. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Zhang, Z.; Jia, Z.; Venkat Surya, P.K.C.; Somani, M.C.; Karjalainen, L.P. Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability. Mater. Sci. Eng. A 2011, 528, 6958–6963. [Google Scholar] [CrossRef]
- Roa, J.J.; Wheeler, J.M.; Trifonov, T.; Michler, J.; Fargas, G.; Mateo, A.; Jiménez-Piqué, E. Deformation of polycrystalline TRIP stainless steel micropillars. Mater. Sci. Eng. A 2015, 647, 51–57. [Google Scholar] [CrossRef]
- Ahn, T.-H.; Oh, C.-S.; Kim, D.H.; Oh, K.H.; Bei, H.; George, E.P.; Han, H.N. Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 2010, 63, 540–543. [Google Scholar] [CrossRef]
- Roa, J.J.; Fargas, G.; Mateo, A.; Jiménez-Piqué, E. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf. Coatings Technol. 2006, 201, 4289–4293. [Google Scholar]
- Yang, B.; Vehoff, H. Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 2007, 55, 849–856. [Google Scholar] [CrossRef]
- Zaafarani, N.; Raabe, D.; Roters, F.; Zaefferer, S. On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 2008, 56, 31–42. [Google Scholar] [CrossRef]
- Kysar, J.W.; Saito, Y.; Oztop, M.S.; Lee, D.; Huh, W.T. Experimental lower bounds on geometrically necessary dislocation density. Int. J. Plast. 2010, 26, 1097–1123. [Google Scholar] [CrossRef]
- Reuber, C.; Eisenlohr, P.; Roters, F.; Raabe, D. Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 2014, 71, 333–348. [Google Scholar] [CrossRef]
- Roa, J.J.; Sapezanskaia, I.; Fargas, G.; Kouitat, R.; Redjaïmia, A.; Mateo, A. Dynamic Deformation of Metastable Austenitic Stainless Steels at the Nanometric Length Scale. Metall. Mater. Trans. A 2018, 49, 6034–6039. [Google Scholar] [CrossRef]
- Roa, J.J.; Sapezanskaia, I.; Fargas, G.; Kouitat, R.; Redjaïmia, A.; Mateo, A. Influence of testing mode on the fatigue behavior of <111> austenitic grain at the nanometric length scale for TRIP steels. Mat. Sci. Eng. A 2018, 713, 287–293. [Google Scholar] [CrossRef]
- Sapezanskaia, I.; Roa, J.J.; Fargas, G.; Turon-Viñas, M.; Trifonov, T.; Kouitat Njiwab, R.; Redjaïmia, A.; Mateo, A. Deformation mechanisms induced by nanoindentation tests on a metastable austenitic stainless steel: A FIB/SIM investigation. Mater. Charact. 2017, 131, 253–260. [Google Scholar] [CrossRef]
- Bieler, T.R.; Eisenlohr, P.; Zhang, C.; Phukan, H.J.; Crimp, M.A. Grain boundaries and interfaces in slip transfer. Curr. Opin. Solid State Mater. Sci. 2014, 18, 212–226. [Google Scholar] [CrossRef]
- Scheriau, S.; Pippan, R. Influence of grain size on orientation changes during plastic deformation. Mater. Sci. Eng. A 2008, 49, 48–52. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 1993, 41, 2611–2624. [Google Scholar] [CrossRef]
- Di Martino, S.F.; Riddle, N.B.; Faulkner, R.G. Controlling the ductile to brittle transition in Fe-9% Cr ODS steels. J. Nuclear Mat. 2013, 442, S124–S132. [Google Scholar] [CrossRef]
- Knipling, K.E.; Rowenhorst, D.J.; Fonda, R.W.; Spanos, G. Effects of focused ion beam milling on austenite stability in ferrous alloys. Mater. Charact. 2010, 61, 1–6. [Google Scholar] [CrossRef]
- Basa, A.; Thaulow, C.; Barnoush, A. Chemically induced phase transformation in austenite by focused ion beam. Metall. Mater. Trans. A 2014, 45, 1189–1198. [Google Scholar] [CrossRef]
- Dahlberg, C.F.O.; Saito, Y.; Öztop, M.S.; Kysar, J.W. Geometrically necessary dislocation density measurements associated with different angles of indentations. Int. J. Plast. 2014, 54, 81–95. [Google Scholar] [CrossRef]
- Zhang, L.; Ohmura, T.; Shibata, A.; Tsuzaki, K. Characterization of local deformation behavior of Fe–Ni lenticular martensite by nanoindentation. Mater. Sci. Eng. A 2010, 527, 1869–1874. [Google Scholar] [CrossRef]
- Das, A. Dislocation configurations through austenite grain misorientations. Int. J. Fatigue 2015, 70, 473–479. [Google Scholar] [CrossRef]
- Kurdjumov, G.; Sachs, G.Z. Über den Mechanismus der Stahlhärtung. Z. Phys. 1930, 64, 325–343. [Google Scholar] [CrossRef]
- Nishiyama, Z. Martensitic Transformation; Fine, M.E., Meshii, M., Waymann, C.M., Eds.; Academic Press: New York, NY, USA, 1978; pp. 480–488. [Google Scholar]
- Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, H.W. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel. Mater. Sci. Eng. A 2015, 636, 221–230. [Google Scholar] [CrossRef]
- Sato, H.; Zaefferer, S.A. A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Mater. 2009, 57, 1931–1946. [Google Scholar] [CrossRef]
- Mine, Y.; Hirashita, K.; Matsuda, M.; Takashima, K. Martensite Formation in Hydrogen-Containing Metastable Austenitic Stainless Steel during Micro-Tension Testing. Metall. Mater. Trans. A 2011, 42, 3567–3574. [Google Scholar] [CrossRef]
- Durlu, T.N. Effects of high austenitizing temperature and austenite deformation on formation of martensite in Fe-Ni-C alloys. J. Mater. Sci. 2001, 36, 5665–5671. [Google Scholar] [CrossRef]
- Yang, H.Y.; Li, J.; Yang, P. The Change of Orientation Relationships between Austenite and α′-Martensite during Deformation in High Manganese TRIP Steel. Acta Metall. Sin. 2015, 28, 289–294. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|
0.02 | 0.5 | 1.3 | 18.6 | 6.4 | 0.1 | 0.07 | balance |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo, A.; Sapezanskaia, I.; Roa, J.J.; Fargas, G.; Redjaïmia, A. Transmission of Plasticity Through Grain Boundaries in a Metastable Austenitic Stainless Steel. Metals 2019, 9, 234. https://doi.org/10.3390/met9020234
Mateo A, Sapezanskaia I, Roa JJ, Fargas G, Redjaïmia A. Transmission of Plasticity Through Grain Boundaries in a Metastable Austenitic Stainless Steel. Metals. 2019; 9(2):234. https://doi.org/10.3390/met9020234
Chicago/Turabian StyleMateo, Antonio, Ina Sapezanskaia, Joan Josep Roa, Gemma Fargas, and Abdelkrim Redjaïmia. 2019. "Transmission of Plasticity Through Grain Boundaries in a Metastable Austenitic Stainless Steel" Metals 9, no. 2: 234. https://doi.org/10.3390/met9020234
APA StyleMateo, A., Sapezanskaia, I., Roa, J. J., Fargas, G., & Redjaïmia, A. (2019). Transmission of Plasticity Through Grain Boundaries in a Metastable Austenitic Stainless Steel. Metals, 9(2), 234. https://doi.org/10.3390/met9020234