Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting
Abstract
1. Introduction
2. Experimental Procedure
3. Results
4. Discussion
5. Summary
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchi, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. App. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 1–46. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Beyer, C.; Figueroa, D. Design and Analysis of Lattice Structures for Additive Manufacturing. ASME J. Manuf. Sci. Eng. 2016, 138, 121014. [Google Scholar] [CrossRef]
- ASM International. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special Purpose Materials; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Tang, M.; Pistorius, P.C.; Narra, S.; Beuth, J.L. Rapid Solidification: Selective Laser Melting of AlSi10Mg. JOM 2016, 68, 960–966. [Google Scholar] [CrossRef]
- Ding, X.; Wang, L. Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment. J. Manuf. Proc. 2017, 26, 280–289. [Google Scholar] [CrossRef]
- Kempen, K.; Yasa, E.; Thijs, L.; Kruth, J.P.; Humbeeck, J.V. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys. Procedia 2011, 12, 255–263. [Google Scholar] [CrossRef]
- Casati, R.; Lemke, J.N.; Tuissi, A.; Vedani, M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals 2016, 6, 218. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Zhang, P.; Liu, M.; Kuang, T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017, 134, 23–34. [Google Scholar] [CrossRef]
- Meneghetti, G.; Rigon, D.; Cozzi, D.; Waldhauser, W.; Dabalà, M. Influence of building orientation on static and axial fatigue properties of maraging steel specimens produced by additive manufacturing. Struct. Integr. Procedia 2016, 7, 149–157. [Google Scholar] [CrossRef]
- Branco, R.; Costa, J.D.M.; Berto, F.; Razavi, S.M.J.; Ferreira, J.A.M.; Capela, C.; Santos, L.; Antunes, F. Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting. Metals 2018, 8, 32. [Google Scholar] [CrossRef]
- Tian, J.; Huang, Z.; Qi, W.; Li, Y.; Liu, J.; Hu, G. Dependence of Microstructure, Relative Density and Hardness of 18Ni-300 Maraging Steel Fabricated by Selective Laser Melting on the Energy Density. In CMC2017: Advances in Materials Processing; Springer: Singapore, 2018; pp. 229–241. [Google Scholar]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J. Jpn. Inst. Light Met. 2017, 67, 182–188. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater. Sci. Eng. A 2017, 704, 218–228. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Suzuki, A.; Kobashi, M. Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting. Mater. Charact. 2017. [Google Scholar] [CrossRef]
- Jägle, E.A.; Choi, P.-P.; Humbeeck, J.V.; Raabe, D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 2014, 29, 2072–2079. [Google Scholar] [CrossRef]
- Kürnsteiner, P.; Wilms, M.B.; Weisheit, A.; Barriobero-Vila, P.; Jägle, E.A.; Raabe, D. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017, 129, 52–60. [Google Scholar] [CrossRef]
- Jägle, E.A.; Sheng, Z.; Kürnsteiner, P.; Ocylok, S.; Weisheit, A.; Raabe, D. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing. Materials 2018, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Chang, Y.A.; Chen, S.; Zhang, F.; Yan, X.; Xie, F.; Schmid-Fetzer, R.; Oates, W.A. Phase diagram calculation: Past, present and future. Prog. Mater. Sci. 2004, 49, 313–345. [Google Scholar] [CrossRef]
- CompuTherm LLC, CompuTherm Database User’s Guide. Available online: http://www.computherm.com/download/database/Database_Manual.pdf (accessed on 20 May 2018).
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification, 3rd ed.; Trans Tech: Wettingen, Switzerland, 1989. [Google Scholar]
- Wan, H.Y.; Zhou, Z.J.; Li, C.P.; Chen, G.F.; Zhang, G.P. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J. Mater. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Sun, S.H.; Hagihara, K.; Nakano, T. Effect of scanning strategy on texture formation in Ni-25 at. %Mo alloys fabricated by selective laser melting. Mater. Des. 2018, 140, 307–316. [Google Scholar] [CrossRef]
- Sinha, A.K.; Buckley, R.A.; Humu-Rothery, W. Equilibrium Diagram of the Iron-Molybdeunm System. J. Iron Steel Inst. 1967, 205, 191–195. [Google Scholar]
- Tayler, A.; Floyd, R.W. Precision Measurements of Lattice Parameters of Non-Cubic Crystals. Acta Cryst. 1950, 3, 285–289. [Google Scholar] [CrossRef]
- Banerjee, M.K. Comprehensive Materials Finishing, Vol. 2 Surface and Heat Treatment Processes; Hashmi, S., Ed.; Elsevier: New York, NY, USA, 2017; pp. 180–213. [Google Scholar]
- Hitzler, L.; Merkel, M.; Hall, W.; Ochsner, A. A Review of Metal Fabricated with Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Adv. Eng. Mater. 2018, 1700658. [Google Scholar] [CrossRef]
- Hitzler, L.; Janousch, C.; Schanz, J.; Merkel, M.; Heine, B.; Mack, F.; Hall, W.; Öchsner, A. Direction and location dependency of selective laser melted AlSi10Mg specimens. J. Mater. Proc. Technol. 2017, 243, 48–61. [Google Scholar] [CrossRef]
- EOS GmbH, Material Data Sheet EOSINT M 280 EOSINT M 270. Available online: https://cdn.eos.info/04f875d5141d28f7/8ecee6ee388d/MS-MS1-M270-M280_200W_Material_data_sheet_05-14_en.pdf (accessed on 20 May 2018).
- Kang, N.; Ma, W.; Heraud, L.; Mansori, M.E.; Li, F.; Liu, M.; Liao, H. Selective laser melting of tungsten carbide reinforced maraging steel composite. Addit. Manuf. 2018, 22, 104–110. [Google Scholar] [CrossRef]
Composition | Ni | Co | Mo | Ti | Al | C | Cr, Cu | Mn, Si | P, S | |
---|---|---|---|---|---|---|---|---|---|---|
Nominal | 17~19 | 8.5~9.5 | 4.5~5.2 | 0.6~0.8 | 0.05~0.15 | ≤0.03 | ≤0.5 | ≤0.05 | ≤0.05 | |
ICP-analyzed | powder | 18.2 | 9.5 | 4.9 | 1.0 | 0.07 | 0.01 | - | - | - |
built | 18.2 | 9.1 | 5.1 | 0.8 | 0.06 | 0.01 | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takata, N.; Nishida, R.; Suzuki, A.; Kobashi, M.; Kato, M. Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting. Metals 2018, 8, 440. https://doi.org/10.3390/met8060440
Takata N, Nishida R, Suzuki A, Kobashi M, Kato M. Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting. Metals. 2018; 8(6):440. https://doi.org/10.3390/met8060440
Chicago/Turabian StyleTakata, Naoki, Ryoya Nishida, Asuka Suzuki, Makoto Kobashi, and Masaki Kato. 2018. "Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting" Metals 8, no. 6: 440. https://doi.org/10.3390/met8060440
APA StyleTakata, N., Nishida, R., Suzuki, A., Kobashi, M., & Kato, M. (2018). Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting. Metals, 8(6), 440. https://doi.org/10.3390/met8060440