Magneto-Structural Properties of Ni2MnGa Ferromagnetic Shape Memory Alloy in Magnetic Fields
Abstract
:1. Magnetic Properties of Ni2MnGa Type Ferromagnetic Shape Memory Alloys
1.1. Outline
1.2. Magnetocrystalline Anisotropy





| Sample | Structural phase | K(104 J/m3) | Exponent n in Equation (1) | Remarks |
|---|---|---|---|---|
| Fe | Bcc | 4.8 | 4 | [24] |
| Co | Hcp | 45 | 3 | [24] |
| αFe2O3 (hematite) | (32/m) | 120 | [24] | |
| Ni2MnGa | Martensite | 11.7 | single crystal [1] | |
| Ni2MnGa | L21austenite | 2.7 | single crystal [1] | |
| Ni2MnGa | 10M martensite | 59 | 3 | single crystal [26] |
| Ni2.14Mn0.92Ga0.94 | 2M martensite | 43 | 3 | single crystal [26] |
| Ni52Mn25Ga23 | 14M martensite | 10.4 | polycrystal [19] | |
| Ni50.5Mn30.4Ga19.1 | NM martensite | 26 (300 K) 50 (10K) | 2.5 | single crystal 40 MPa tensile stress [27] |
| Ni50.5Mn29.4Ga20.1 | 5M martensite | K1 16.5 K2 negligible | 2~3 | single crystal room temp. [22] |
| Ni50.5Mn29.4Ga21.2 | 7M martensite | K117 K29 | 2~3 | single crystal room temp. [22] |
| Nd2Fe17 | Rhombohedral Th2Zn17 | K1Nd = −5700 K2Nd = 2600 | Stray out from Equation (1) | single crystal 4.2 K [28] |
| UGe2 | Orthorhombic Cmmm ThGe2 | 3500 | 1 | single crystal 4.2 K [29] |
2. Structural and Magnetic Properties in Magnetic Fields
= 4.0961 Å, and the volume of the unit cell was VA = (a/√2)3 = (4.0961)3 = 68.72 Å3. Furthermore, the volume VM in the martensite phase was estimated and compared with VA in the same area. In the 14 M (7R) martensite phase, a = 4.2495 Å in the basal plane is parallel to one of the a axis in the L21 structure, and is of the same unit. The other axis in the martensite phase corresponds to one of the a axis in the L21 structure of the Mn–Mn ridge in the basal plane (
). The c axis is almost normal (β = 93.36°) to the basal plane and the seven Mn–Mn cycles at c = 29.340 Å. Therefore, the volume,
| Sample | MM | MA | (MM − MA)/MM | dTM/dB(K/T) | Remarks |
|---|---|---|---|---|---|
| Ni2MnGa | 90 Am2/kg at 180 K (*1) Ferro | 80 Am2/kg at 220 K (*1) Ferro | 0.11 | 0.20 (*2) 0.40 ± 0.25 (*3) | *1 [2] *2 [25] *3 [26] |
| Ni2.19Mn0.81Ga | 2.0 (a.u.) (*4) at 300 K Ferro | 0 (a.u.) (*4) at 350 K Para | 1.0 | 1.0 (*4) | *4 [28] |
| Ni52Mn12.5Fe12.5Ga23 | 63.1 Am2/kg at 250 K Ferro | 52.7 Am2/kg at 300 K Ferro | 0.16 | 0.5 | [20] |
| Ni2Mn0.75Cu0.25Ga | 42.4 Am2/kg at 300 K Ferro | 0 Am2/kg at 307 K Para | 1.0 | 1.2 | [20] |
| Ni2MnGa0.88Cu0.12 | 37.3 Am2/kg at 330 K Ferro | 0 Am2/kg at 340 K Para | 1.0 | 1.3 | [29] |
| Ni52Mn25Ga23 | 42.2 Am2/kg at 333 K Ferro | 34.2 Am2/kg at 335 K Ferro | 0.19 | 0.43 | [19] |
| Ni45Co5Mn36.7In13.3 | 0 Am2/kg at 270 K Para | 70 Am2/kg at 320 K Ferro | −1.0 | −4.3 | [42] |
| Ni43Co7Mn31Ga19 | 20 Am2/kg at TCM ≤ T ≤ TM Para or weak Ferro | 59.2 Am2/kg at TM ≤ T ≤ TCA Ferro | −0.64 | −2.95 | [39] |
| Ni41Co9Mn32Ga18 | 4.0 Am2/kg at TCM ≤ T ≤ TM Para or weak Ferro | 53.3 Am2/kg at TM ≤ T ≤ TCA Ferro | −0.92 | −2.8 | [39] |
| Ni41Co9Mn31.5Ga18.5 | 12 Am2/kg at TCM ≤ T = 316 K ≤ TM Para or weak Ferro | 79 Am2/kg at TM ≤ T = 388 K ≤ TCA Ferro | −0.84 | −4.2 | [40] |
.
K for ΔB = 8 T. ΔT/ΔB = 3.3 K/T decrease. The difference between the experimental value of dTM/dB is −4.2 K/T and the calculated value is supposed to the latent heat of the first order martensite transformation.
, in Fmag-ela affects the large magneto-structural coupling. Thus, strong magneto-structural coupling was displayed to play an important role in the magnetic properties and phase transitions of FSMAs. In the last part of Section 1, we mentioned about the magnetocrystalline anisotropy. The large magnetocrystalline anisotropy influences the magneto-elastic coupling Fmag-ela by means of the bi-quadratic term,
. In Ni50−xCoxMn31.5Ga18.5 (0 ≤ x ≤ 9), magnetization M increases with the magnetic field between 338 K and 388 K [41]. The thermal hysteresis of the thermal strain also decreases at high magnetic fields. Other Heusler compounds such as Ni50+xMn12.5Fe12.5Ga25−x, show an x–T phase diagram similar to that of Ni2Mn1−xCuxGa [20]. In comparison with the experimental results of Ni41Co9Mn31.5Ga18.5 and Ni2Mn1−xCuxGa, it is considered that the thermal hysteresis of the thermal strain that decreases with increasing magnetic field is an indication of strong magneto-structural coupling in Ni41Co9Mn31.5Ga18.5. The magnetic field-induced strain in single crystal, or magnetostriction in polycrystal in Ni2MnGa, Ni-Co-Mn-Ga, and Ni-Co-Mn-In alloys also suggest a strong magneto-structural coupling. In the next section, we will mention the magnetic field-induced strains of the magnetic shape memory alloys.3. Magnetic Field-Induced Strain and Magnetostriction in Shape Memory Alloys
| Sample | Crystal structure | crystalline | Magnitude | Remarks |
|---|---|---|---|---|
| Ni49.8Mn28.5Ga21.7 | Fm3m | Single | 6.0% at 300 K under 1 MPa | [52] |
| Fe-31.2%Pd (at.%) | Disordered A1 | Single | 3.0% at 4.2 K | [53,54] |
| Fe3Pt | L12 | Single | 2.3% at 4.2 K | [55,56] |
| Ni45Co5Mn36.7In13.3 | 14M | Single | 3.0% at 298 K | [42] |
| Ni51.1Mn24.9Ga24.0 | D022 | Poly | −67 ppm at 180 K | [62] |
| Ni52Mn25Ga23 | 14M | Poly | −100 ppm at 300 K | [19] |
| Ni41Co9Mn31.5Ga18.5 | D022 | Poly | 0.11% at 350 K | [40] |

4. Summary
Acknowledgments
References
- Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996, 69, 1966–1968. [Google Scholar] [CrossRef]
- Webster, P.J.; Ziebeck, K.R.A.; Town, S.L.; Peak, M.S. Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. B 1984, 49, 295–310. [Google Scholar] [CrossRef]
- Brown, P.J.; Crangle, J.; Kanomata, T.; Matsumoto, M.; Neumann, K-.U.; Ouladdiaf, B.; Ziebeck, K.R.A. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys. Condens. Matter. 2002, 14, 10159–10171. [Google Scholar] [CrossRef]
- Pons, J.; Santamarta, R.; Chernenko, V.A.; Cesari, E. Long-Period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy. J. Appl. Phys. 2005, 97, 083516:1–083516:7. [Google Scholar]
- Ranjan, R.; Banik, S.; Barman, S.R.; Kumar, U.; Mukhopadhyay, P.K.; Pandey, D. Powder x-ray diffraction study of the thermoelastic martensite transition in Ni2Mn1.05Ga0.95. Phys. Rev. B 2006, 74, 224443:1–224443:2. [Google Scholar]
- Jiang, C.; Feng, G.; Gong, S.; Xu, H. Effect of Ni excess on phase transformation temperatures of NiMnGa alloys. Mater. Sci. Eng. A 2003, 342, 231–235. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, C.; Li, Y.; Xu, H.; Wang, C.; Liu, X. Study of Ni50+xMn25Ga25−x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater. 2007, 55, 1533–1541. [Google Scholar] [CrossRef]
- Mañosa, L.; Moya, X.; Planes, A.; Krenke, T.; Acet, M.; Wassermann, E.F. Ni-Mn-based magnetic shape memory alloys: Magnetic properties and martensite transformation. Mater. Sci. Eng. A 2008, 481–482, 49–56. [Google Scholar]
- Sánchez-Alarcos, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Recarte, V. Influence of the atomic order on the magnetic characteristics of a Ni–Mn–Ga ferromagnetic shape memory alloy. J. Magn. Magn. Mater. 2008, 320, e160–e163. [Google Scholar] [CrossRef]
- Rudajevová, A. Analysis of the thermal expansion characteristics of Ni53.6Mn27.1Ga19.3 alloy. J. Alloys Compd. 2007, 430, 153–157. [Google Scholar] [CrossRef]
- Zhu, F.Q.; Yang, F.Y.; Chien, C.L.; Ritchie, L.; Xiao, G.; Wu, G.H. Magnetic and thermal properties of Ni–Mn–Ga shape memory alloy with Martensite transition near room temperature. J. Magn. Magn. Mater. 2005, 288, 79–83. [Google Scholar] [CrossRef]
- Chernenko, V.A.; L’vov, V.A.; Khovailo, V.V.; Takagi, T.; Kanomata, T.; Suzuki, T.; Kainuma, R. Interdependence between the magnetic properties and lattice parameters of Ni–Mn–Ga martensite. J. Phys. Condens. Matter. 2004, 16, 8345–8352. [Google Scholar]
- Golub, V.O.; Vovk, A.Y.; O’Connor, C.J.; Kotov, V.V.; Yakovenko, P.G.; Ullakko, K. Magnetic and structural properties of nonstoichiometric Ni2MnGa alloys with Ni and Ga excess. J. Appl. Phys. 2003, 93, 8504–8506. [Google Scholar] [CrossRef]
- Kim, J.; Inaba, F.; Fukuda, T.; Kakeshita, T. Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys. Acta Mater. 2006, 54, 493–499. [Google Scholar] [CrossRef]
- González-Comas, A.; Obradó, E.; Mafiosa, L.; Planes, A.; Labarta, A. Magnetoelasticity in the Heusler Ni2MnGa alloy. J. Magn. Magn. Mater. 1999, 196–197, 637–638. [Google Scholar]
- Lanska, N.; Söderberg, O.; Sozinov, A.; Ge, Y.; Ullakko, K.; Lindroos, V.K. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 2004, 95, 8074–8078. [Google Scholar] [CrossRef]
- Likhachev, A.A.; Ullakko, K. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 2000, 275, 142–151. [Google Scholar] [CrossRef]
- Murray, S.J.; Farinelli, M.; Kantner, C.; Huang, J.K.; Allen, S.M.; O’Handley, R.C. Field-induced strain under load in Ni–Mn–Ga magnetic shape memory materials. J. Appl. Phys. 1998, 83, 7297–7299. [Google Scholar] [CrossRef]
- Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Numakura, D.; Abe, M.; Endo, K.; Yamashita, S.; Nojiri, H.; Kanomata, T. Thermal strain and magnetization of the ferromagnetic shape memory alloy Ni52Mn25Ga23 in a magnetic field. J. Phys. Chem. Solids 2013, 74, 158–165. [Google Scholar] [CrossRef]
- Kikuchi, D.; Kanomata, T.; Yamaguchi, Y.; Nishihara, H. Magnetic properties of ferromagnetic shape memory alloys Ni50+xMn12.5Fe12.5Ga25−x. J. Alloys Compd. 2006, 426, 223–227. [Google Scholar] [CrossRef]
- Dai, L.; Cullen, J.; Wuttig, M. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 2004, 95, 6957–6959. [Google Scholar] [CrossRef]
- Straka, L.; Heczko, O. Magnetic anisotropy in Ni-Mn-Ga martensite. J. Appl. Phys. 2003, 93, 8636–8638. [Google Scholar] [CrossRef]
- Callen, H.B.; Callen, E. The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)/2 power law. J. Phys. Chem. Solids 1966, 27, 1271–1285. [Google Scholar] [CrossRef]
- Ziljistra, H. Experimental Methods in Magnetism 2; North-Holland Pub. Co.: Amsterdam, The Neatherland, 1967; pp. 168–181. [Google Scholar]
- Graham, C.D., Jr. Magnetocrystalline anisotropy constants of iron at room temperature and below. Phys. Rev. 1958, 112, 1117–1120. [Google Scholar] [CrossRef]
- Okamoto, N.; Fukuda, T.; Kakeshita, T.; Takeuchi, T. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 2006, 438–440, 948–951. [Google Scholar]
- Heczko, O.; Straka, L.; Novak, V.; Fähler, S. Magnetic anisotropy of nonmodulated Ni–Mn–Ga martensite revisited. J. Appl. Phys. 2010, 107, 09A914:1–09A914:3. [Google Scholar]
- Koyama, K.; Fujii, H.; Canfield, P.C. Magnetocrystalline anisotropy of a Nd2Fe17 single crystal. Physica. B 1996, 226, 363–369. [Google Scholar] [CrossRef]
- Sakon, T.; Saito, S.; Koyama, K.; Awaji, S.; Sato, I.; Nojima, T.; Watanabe, K.; Sato, N.K. Experimental investigation of giant magnetocrystalline anisotropy of UGe2. Phys. Scr. 2007, 75, 546–550. [Google Scholar] [CrossRef]
- Boulet, P.; Daoudi, A.; Potel, M.; Noël, M.; Gross, G.M.; André, G.; Bourée, F. Crystal and magnetic structure of the uranium digermanide UGe2. J. Alloys Comp. 1997, 247, 104–108. [Google Scholar] [CrossRef]
- Kataoka, M.; Endo, K.; Kudo, N.; Kanomata, T.; Nishihara, H.; Shishido, T.; Umetsu, R.Y.; Nagasako, M.; Kainuma, R. Martensitic transformation, ferromagnetic transition, and their interplay in the shape memory alloys Ni2Mn1−xCuxGa. Phys. Rev. B 2010, 82, 1–14. [Google Scholar]
- Oikawa, K.; Ota, T.; Ohmori, T.; Tanaka, Y.; Morito, H.; Fujita, A.; Kainuma, R.; Fukamichi, K.; Ishida, K. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 2002, 81, 5201–5203. [Google Scholar] [CrossRef]
- Sutou, Y.; Kamiya, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 84, 1275–1277. [Google Scholar] [CrossRef]
- Oikawa, K.; Ota, T.; Sutou, Y.; Ohmori, T.; Kainuma, R.; Ishida, K. Magnetic and martensitic phase transformations in a Ni54Ga27Fe19 Alloy. Mater. Trans. 2002, 43, 2360–2362. [Google Scholar] [CrossRef]
- Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Endo, K.; Nojiri, H.; Kanomata, T. Thermal expansion and magnetization studies of novel ferromagnetic shape memory alloys Ni52Mn12.5Fe12.5Ga23 and Ni2Mn0.75Cu0.25Ga. Mater. Trans. 2011, 52, 1142–1147. [Google Scholar] [CrossRef]
- Vasil’ev, A.N.; Estrin, E.I.; Khovailo, V.V.; Bozhko, A.D.; Ischuk, R.A.; Matsumoto, M.; Takagi, T.; Tani, J. Dilatometric study of Ni2+xMn1−xGa under magnetic field. Int. Appl. Electromagn. Mechan. 2000, 12, 35–40. [Google Scholar]
- Kikuchi, D. Thermomagnetic Properties of Quarternary Ni-Mn-Fe-Ga Ferromagnet Shape Memory Alloys. Master Thesis, Tohoku Gakuin University, Takajo, Japan, 2005. [Google Scholar]
- Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Numakura, D.; Abe, M.; Endo, K.; Nojiri, H.; Kanomata, T. Thermal expansion and magnetization studies of the novel ferromagnetic shape memory alloy Ni2MnGa0.88Cu0.12 in a magnetic field. Physica Scripta 2011, 84, 1–6. [Google Scholar]
- Albertini, F.; Fabbrici, S.; Paoluzi, A.; Kamarad, J.; Arnold, Z.; Righi, L.; Solzi, M.; Porcari, G.; Pernechele, C.; Serrate, D.; et al. Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: Structural, magnetic, and magnetoelastic properties. Mater. Sci. Forum 2011, 684, 151–163. [Google Scholar] [CrossRef]
- Sakon, T.; Sasaki, K.; Numakura, D.; Abe, M.; Nojiri, H.; Adachi, Y.; Kanomata, T. Magnetic field-induced transition in Co-Doped Ni41Co9Mn31.5Ga18.5 Heusler Alloy. Mater. Trans. 2013, 54, 9–13. [Google Scholar] [CrossRef]
- Sakon, T.; Nojiri, H.; Adachi, Y.; Kanomata, T. Crystallography and Magnetic field-induced strain by Co doping NiCoMnGa Heusler alloy. TMS2013 Suppl. Proc. 2013. [Google Scholar] [CrossRef]
- Kainuma, R.; Imano, Y.; Ito, W.; Sutou, Y.; Morino, H.; Okamoto, S.; Kitakami, O.; Oikawa, K.; Fujita, A.; Kanomata, T.; et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006, 439, 957–960. [Google Scholar] [CrossRef]
- Monroe, J.A.; Karaman, I.; Basaran, B.; Xu, X.; Ito, W.; Umetsu, R.Y.; Kainuma, R.; Koyama, K.; Chumlyakov, Y.I. Kinetic arrest of martensitic transformation in Ni33.0Co13.4Mn39.7Ga13.9 metamagnetic shape memory alloy. Mater. Trans. 2010, 51, 469–471. [Google Scholar] [CrossRef]
- Sakon, T.; Yamazaki, S.; Kodama, Y.; Motokawa, M.; Kanomata, T.; Oikawa, K.; Kainuma, R.; Ishida, K. Magnetic field-induced strain of Ni–Co–Mn–In alloy in pulsed magnetic field. Jpn. J. Appl. Phys. 2007, 46, 995–998. [Google Scholar] [CrossRef]
- Casanova, F.; Battle, X.; Labarta, A.; Marcos, J.; Manósa, L.; Planes, A. Entropy change and magnetocaloric effect in Gd5(SixGe1−x)4. Phys. Rev. B 2002, 66, 100401:1–100401:4. [Google Scholar]
- Satyanarayan, K.R.; Eliasz, W.; Miodownik, A.P. The effect of a magnetic field on the martensite transformation in steels. Acta Metall. 1968, 16, 877–887. [Google Scholar] [CrossRef]
- Nishiyama, Z.; Fine, M.E.; Meshii, M.; Wayman, C.M. Martensite Transformation; Academic Press: Tokyo, Japan, 1971. [Google Scholar]
- Kanomata, T.; Endo, K.; Kudo, N.; Umetsu, R.Y.; Nishihara, H.; Kataoka, M.; Nagasako, M.; Kainuma, R.; Ziebeck, K.R.A. Magnetic moment of Cu-modified Ni2MnGa magnetic shape memory alloys. Metals 2013, 3, 114–122. [Google Scholar] [CrossRef]
- Khovaylo, V.V.; Buchelnikov, V.D.; Kainuma, R.; Koledov, V.V.; Ohtsuka, M.; Shavrov, V.G.; Takagi, T.; Taskaev, S.V.; Vasiliev, A.N. Phase transitions in Ni2+xMn1−xGa with a high Ni excess. Phys. Rev. B 2005, 72, 224408:1–224408:10. [Google Scholar]
- Ullakko, K.; Huang, J.K.; Kokorin, V.V.; O’Handley, R.C. Magnetically controlled shape memory effect in Ni2MnGa intermetallics. Scr. Mater. 1997, 36, 1133–1138. [Google Scholar] [CrossRef]
- Kakeshita, T.; Ullakko, K. Giant magnetostriction in ferromagnetic shape-memory alloys. MRS Bull. 2002, 27, 105–109. [Google Scholar] [CrossRef]
- Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 2000, 77, 886–888. [Google Scholar] [CrossRef]
- Kakeshita, T.; Fukuda, T.; Sakamoto, T.; Takeuchi, T.; Kindo, K.; Endo, S.; Kishino, K. Martensitic transformation in shape memory alloys under magnetic field and hydrostatic pressure. Mater. Trans. 2002, 43, 887–892. [Google Scholar] [CrossRef]
- Sakamoto, T.; Fukuda, T.; Kakeshita, T.; Takeuchi, T.; Kishino, K. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 2003, 93, 8647. [Google Scholar] [CrossRef]
- Kakeshita, T.; Fukuda, T. Conversion of variants by magnetic field in Iron-based ferromagnetic shape memory alloys. Mater. Sci. Forum 2003, 426–432, 2309–2314. [Google Scholar] [CrossRef]
- Fukuda, T.; Sakomoto, T.; Inoue, T.; Kakeshita, T.; Kishio, K. Influence of magnetic field direction on recoverable strain due to rearrangement of variants in Fe3Pt. Trans. Mater. Res. Soc. Jpn. 2004, 29, 3059–3060. [Google Scholar]
- Henry, C.P.; Feuchtwanger, J.; Bono, D.; O’Handley, R.C.; Allen, A.M. Dynamic Magnetic Field-Induced Strain Response of Ni49.8Mn28.5Ga21.7 Ferromagnetic Shape Memory Alloy up to 332 Hz. In The Fourth Pacific Rim International Conference. Advanced Materials and Processing (PRICM4), Hawaii, USA, 11–15 December 2001; pp. 1657–1660.
- Sakon, T.; Takaha, A.; Matsuoka, Y.; Obara, K.; Saito, T.; Motokawa, M.; Fukuda, T.; Kakeshita, T. Field-induced strain of shape memory alloy Fe-31.2%Pd using a capacitance method in a pulsed magnetic field. Jpn. J. Appl. Phys. 2004, 43, 7467–7471. [Google Scholar]
- Sakon, T.; Takaha, A.; Obara, K.; Dejima, K.; Nojiri, H.; Motokawa, M.; Fukuda, T.; Kakeshita, T. Magnetic-field-induced strain of shape-memory alloy Fe3Pt studied by a capacitance method in a pulsed magnetic field. Jpn. J. Appl. Phys. 2007, 46, 146–151. [Google Scholar]
- Sutou, Y.; Imano, Y.; Koeda, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 85, 4358–4360. [Google Scholar] [CrossRef]
- Oikawa, K.; Ito, W.; Imano, Y.; Sutou, Y.; Kainuma, R.; Ishida, K.; Okamoto, S.; Kitakami, O.; Kanomata, T. Effect of magnetic field on martensite transformation of Ni46Mn41In13 Heusler alloy. Appl. Phys. Lett. 2006, 88, 122507:1–122507:3. [Google Scholar]
- Barandiarán, J.M.; Chernenko, V.A.; Gutiérrez, J.; Orúe, I.; Lázpita, P. Magnetostriction in the vicinity of structural transitions in Ni2MnGa. Appl. Phys. Lett. 2012, 100, 262410:1–262410:5. [Google Scholar]
- Xu, X.; Ito, W.; Katakura, I.; Tokunaga, M.; Kainuma, R. In situ optical microscopic observation of NiCoMnIn metamagnetic shape memory alloy under pulsed high magnetic field. Scr. Mater. 2011, 65, 946–949. [Google Scholar]
- Barandiarán, J.M.; Chernenko, V.A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. Appl. Phys. Lett. 2013, 102, 071904:1–071904:4. [Google Scholar]
- Entel, P.; Siewert, M.; Gruner, M.E.; Herper, H.C.; Comtesse, D.; Arroyave, R.; Singh, N.; Talapatra, A.; Sokolovskiy, V.V.; Buchelnikov, V.D.; et al. Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur. Phys. J. B 2013, 86, 65:1–65:11. [Google Scholar]
- Lázpita, P.; Barandiarán, J.M.; Gutiérrez, J.; Feuchtwanger, J.; Chernenko, V.A.; Richard, M.L. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys. N. J. Phys. 2011, 13, 033039:1–033039:14. [Google Scholar]
- Lázpita, P.; Chernenko, V.A.; Barandiarán, J.M.; Orue, I.; Gutiérrez, J.; Feuchtwanger, J.; Rodriguez-Velamazán, J.A. Influence of magnetic field on magnetostructural transition in Ni46.4Mn32.8Sn20.8 Heusler alloy. Mater. Sci. Forum 2010, 635, 89–95. [Google Scholar]
- Barandiarán, J.M.; Chernenko, V.A.; Lázpita, P.; Gutiérrez, J.; Feuchtwanger, J. Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Phys. Rev. B 2009, 80, 104404:1–104404:7. [Google Scholar]
- Chernenko, V.A.; Lv’ov, V.A.; Kanomata, T.; Kakeshita, T.; Koyama, K.; Besseghini, S. Martensitic transformation in Ni-Mn-Ga alloy under high magnetic fields. Mater. Trans. 2006, 47, 635–638. [Google Scholar] [CrossRef]
- Oikawa, K.; Imano, Y.; Chernenko, V.A.; Luo, F.; Omori, T.; Sutou, Y.; Kainuma, R.; Kanomata, T.; Ishida, K. Influence of Co addition on martensitic and magnetic transitions in Ni-Fe-Ga β based shape memory alloys. Mater. Trans. 2005, 46, 734–737. [Google Scholar] [CrossRef]
- Chernenko, V.A.; L’vov, V.A.; Golub, V.; Aseguinolaza, I.R.; Barandiarán, J.M. Magnetic anisotropy of mesoscale-twinned Ni-Mn-Ga thin films. Phys. Rev. B 2011, 84, 054450:1–054450:7. [Google Scholar]
- L’vov, V.; Chernenko, V. Magnetic anisotropy of ferromagnetic martensites. Mater. Sci. Forum 2011, 684, 31–47. [Google Scholar] [CrossRef]
- Chernenko, V.A.; L’vov, V.A. Magnetoelastic nature of ferromagnetic shape memory effect. Mater. Sci. Forum 2008, 583, 1–20. [Google Scholar] [CrossRef]
- L’vov, V.; Zagorodnyuk, S.; Chernenko, V.; Takagi, T. Magnetic-field-induced stresses and magnetostrain effect in martensite. Mater. Trans. 2002, 43, 876–880. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sakon, T.; Adachi, Y.; Kanomata, T. Magneto-Structural Properties of Ni2MnGa Ferromagnetic Shape Memory Alloy in Magnetic Fields. Metals 2013, 3, 202-224. https://doi.org/10.3390/met3020202
Sakon T, Adachi Y, Kanomata T. Magneto-Structural Properties of Ni2MnGa Ferromagnetic Shape Memory Alloy in Magnetic Fields. Metals. 2013; 3(2):202-224. https://doi.org/10.3390/met3020202
Chicago/Turabian StyleSakon, Takuo, Yoshiya Adachi, and Takeshi Kanomata. 2013. "Magneto-Structural Properties of Ni2MnGa Ferromagnetic Shape Memory Alloy in Magnetic Fields" Metals 3, no. 2: 202-224. https://doi.org/10.3390/met3020202
APA StyleSakon, T., Adachi, Y., & Kanomata, T. (2013). Magneto-Structural Properties of Ni2MnGa Ferromagnetic Shape Memory Alloy in Magnetic Fields. Metals, 3(2), 202-224. https://doi.org/10.3390/met3020202
