Manufacturing Processes for Metallic Materials
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Conflicts of Interest
List of Contributions
- Spena, P.R.; De Maddis, M.; Razza, V.; Santoro, L.; Mamarayimov, H.; Basile, D. Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets. Metals 2025, 15, 830. https://doi.org/10.3390/met15080830.
- Dai, M.; Hu, Y.; Hao, Y.; Qiu, P.; Xiao, H. Analysis of Temperature and Stress Fields in the Process of Hot-Rolled Strip Coiling. Metals 2025, 15, 111. https://doi.org/10.3390/met15020111.
- Kendall, M.; Coleman, M.; Cockings, H.; Sackett, E.; Owen, C.; Auinger, M. Computational Thermochemistry for Modelling Oxidation During the Conveyance Tube Manufacturing Process. Metals 2024, 14, 1402. https://doi.org/10.3390/met14121402.
- Zou, C.; Wu, R.; Yang, X.; Ma, Z.; Hou, L. Effects of a Welding Wire Containing Er or Sc on the Microstructure, Mechanical Properties, and Corrosion Resistance of the 5xxx Aluminum Alloy MIG Joint. Metals 2025, 15, 287. https://doi.org/10.3390/met15030287.
- Sisodia, R.P.S.; Sliwinski, P.; Koncz-Horváth, D.; Węglowski, M.S. Influence of Post-Weld Heat Treatment on S960QL High-Strength Structural Steel Electron-Beam-Welded Joint. Metals 2024, 14, 1393. https://doi.org/10.3390/met14121393.
- Wang, H.; Liu, J.; Liu, B.; Zhang, Z.; Ren, X.; Wang, X.; Wu, P.; Zhang, Y. Direct In Situ Fabrication of Strong Bonding ZIF-8 Film on Zinc Substrate and Its Formation Mechanism. Metals 2024, 14, 1403. https://doi.org/10.3390/met14121403.
- Cui, X.; Li, X.; Hu, C.; Zhao, D.; Liu, Y.; Wang, S. Microstructure and Properties of Mooring Chain Steel Prepared by Selective Laser Melting. Metals 2025, 15, 541. https://doi.org/10.3390/met15050541.
- Gracheva, A.; Polozov, I.; Popovich, A. Additive Manufacturing of Biodegradable Metallic Implants by Selective Laser Melting: Current Research Status and Application Perspectives. Metals 2025, 15, 754. https://doi.org/10.3390/met15070754.
- Meilinger, Á.; Kovács, P.Z.; Lukács, J. High-Cycle Fatigue Characteristics of Aluminum/Steel Clinched and Resistance-Spot-Welded Joints Based on Failure Modes. Metals 2024, 14, 1375. https://doi.org/10.3390/met14121375.
- Basak, A.K.; Bajwa, D.S.; Pramanik, A. Fatigue Behaviour of Mechanical Joints: A Review. Metals 2024, 15, 25. https://doi.org/10.3390/met15010025.
References
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Ding, W.; Wan, N.; Zhao, B.; Fu, Y.; Xu, J. Research status and tendency of advanced manufacturing theory and technology in aerospace. Acta Aeronaut. Astronaut. Sin. 2025, 46, 531309. [Google Scholar]
- Vergara, D.; Fernández-Arias, P.; Ariza-Echeverri, E.A.; del Bosque, A. Residual Stresses in Metal Manufacturing: A Bibliometric Review. Materials 2025, 18, 3612. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Feih, S.; Zhai, W.; Sun, C.-N.; Li, F.; Maiti, R.; Wei, J.; Yang, Y.; Oancea, V.; Brandt, L.R.; et al. Advances in additive manufacturing process simulation: Residual stresses and distortion predictions in complex metallic components. Mater. Des. 2020, 193, 108779. [Google Scholar] [CrossRef]
- Xu, Z.-J.; Zheng, Z.; Gao, X.-Q. Operation optimization of the steel manufacturing process: A brief review. Int. J. Miner. Met. Mater. 2021, 28, 1274–1287. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Amaral, J.V.S.D.; Miranda, R.d.C.; Montevechi, J.A.B.; dos Santos, C.H.; Gabriel, G.T. Metamodeling-based simulation optimization in manufacturing problems: A comparative study. Int. J. Adv. Manuf. Technol. 2022, 120, 5205–5224. [Google Scholar] [CrossRef]
- Liu, C.; Rao, J.; Sun, Z.; Lu, W.; Best, J.P.; Li, X.; Xia, W.; Gong, Y.; Wei, Y.; Zhang, B.; et al. Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes. Nat. Commun. 2024, 15, 9283. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Wang, C.; Tor, S.B.; Ramamurty, U.; Tan, X. Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes. Nat. Commun. 2024, 15, 3094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Kai, X.; Yang, J.; Zhu, H.; Shan, Y. Study on the Microstructure and Mechanical Properties of 7085 Aluminum Alloy Reinforced by In Situ (ZrB2 + Al2O3) Nanoparticles and Rare Earth Er. Materials 2025, 18, 2009. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-R.; Yang, H.; Li, H.-Q.; Ma, Y.-C.; Yu, S.; Shi, J.; Cheng, J.-C.; Gao, P.; Yu, B.; Miao, Z.-Q.; et al. Advancements in machine learning for material design and process optimization in the field of additive manufacturing. China Foundry 2024, 21, 101–115. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, M.; Wang, P.; Cheng, Z.; Yang, C.; Xu, B.; Peng, D.; Liu, C.; Shen, J. The application status and prospects of ma-chine learning in metal additive manufacturing. Aeronaut. Manufact. Technol. 2022, 65, 14–28. [Google Scholar] [CrossRef]
- Chia, H.Y.; Wu, J.; Wang, X.; Yan, W. Process parameter optimization of metal additive manufacturing: A review and outlook. J. Mater. Inform. 2022, 2, 16. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Molaei, R.; Fatemi, A. Fatigue Design with Additive Manufactured Metals: Issues to Consider and Perspective for Future Research. Procedia Eng. 2018, 213, 5–16. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Xiao, H. Manufacturing Processes for Metallic Materials. Metals 2025, 15, 1203. https://doi.org/10.3390/met15111203
Yu C, Xiao H. Manufacturing Processes for Metallic Materials. Metals. 2025; 15(11):1203. https://doi.org/10.3390/met15111203
Chicago/Turabian StyleYu, Chao, and Hong Xiao. 2025. "Manufacturing Processes for Metallic Materials" Metals 15, no. 11: 1203. https://doi.org/10.3390/met15111203
APA StyleYu, C., & Xiao, H. (2025). Manufacturing Processes for Metallic Materials. Metals, 15(11), 1203. https://doi.org/10.3390/met15111203
 
        

