The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Structural Characterization
2.2. Degradation Experiment
2.3. Characterization of the Catalytic Mechanism
3. Results and Discussion
3.1. Degradation Performance
3.2. The Impact of Environmental Factors
3.2.1. Effect of H2O2 Addition
3.2.2. Effect of pH
3.2.3. Effect of Dye Concentration
3.2.4. Effect of Temperature
3.3. Cycling Stability
3.4. XPS Analysis
3.5. Degradation Mechanism
4. Conclusions
- (1)
- The Mo51Fe34B15 metallic glass wires demonstrated a reaction rate constant of 0.698 min−1 in degrading a 20 ppm RB5 dye solution within 10 min, achieving a degradation efficiency of 98.8%.
- (2)
- During the reaction process, corrosion develops on the surface of the Mo51Fe34B15 metallic glass wire, leading to the formation of oxidative products such as MoO3 and Fe2O3, which gradually reduce catalytic efficiency.
- (3)
- The Mo51Fe34B15 metallic glass wire exhibits effective degradation capability toward RB5 dye solutions over a wide pH range from 2 to 9, demonstrating excellent pH adaptability.
- (4)
- The Mo51Fe34B15-H2O2 system overcomes the conventional limitation in which excessive H2O2 acts as a scavenger of •OH radicals. Even when the H2O2 concentration increases from 0.01 M to 0.1 M, the degradation rate of RB5 dye by the Mo51Fe34B15 metallic glass wire is significantly enhanced.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Benedetto, C.; Macario, A.; Siciliano, C.; Nagy, J.; De Luca, P. Adsorption of Reactive Blue 116 Dye and Reactive Yellow 81 Dye from Aqueous Solutions by Multi-Walled Carbon Nanotubes. Materials 2020, 13, 2757. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Bozoglan, B.K.; Polat, T.G. Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. J. Alloys Compd. 2016, 687, 370–383. [Google Scholar] [CrossRef]
- Khouni, I.; Marrot, B.; Ben Amar, R. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep. Purif. Technol. 2012, 87, 110–119. [Google Scholar] [CrossRef]
- M-Ridha, M.J.; Hussein, S.I.; Alismaeel, Z.T.; Atiya, M.A.; Aziz, G.M. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alex. Eng. J. 2020, 59, 3551–3563. [Google Scholar] [CrossRef]
- De Luca, P.; Nagy, J. Treatment of Water Contaminated with Reactive Black-5 Dye by Carbon Nanotubes. Materials 2020, 13, 5508. [Google Scholar] [CrossRef] [PubMed]
- Satapanajaru, T.; Chokejaroenrat, C.; Pengthamkeerati, P. Removal of Reactive Black 5 and its degradation using combined treatment of nano-zerovalent iron activated persulfate and adsorption processes. Desalin. Water Treat. 2018, 102, 300–311. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Zhao, X.; Dong, Y.; Wang, W.; Lv, Y.; Cao, S.; Wang, L. Enhanced degradation of reactive black 5 via persulfate activation by natural bornite: Influencing parameters, mechanism and degradation pathway. Environ. Technol. 2023, 45, 3961–3973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D. Degradation of the azo dye Reactive Black 5 through peroxymonosulfate activation with functional S-doped graphene. Desalin. Water Treat. 2022, 252, 361–370. [Google Scholar] [CrossRef]
- Viana, D.F.; Salazar-Banda, G.R.; Leite, M.S. Electrochemical degradation of Reactive Black 5 with surface response and artificial neural networks optimization models. Sep. Sci. Technol. 2018, 53, 2647–2661. [Google Scholar] [CrossRef]
- Cuervo Lumbaque, E.; Gomes, M.F.; Da Silva Carvalho, V.; de Freitas, A.M.; Tiburtius, E.R.L. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process. Environ. Sci. Pollut. Res. 2016, 24, 6126–6134. [Google Scholar] [CrossRef]
- Gupta, S.; Zasońska, B.A.; Acharya, U.; Konefał, M.; Pokorný, V.; Petrovsky, E.; Breitenbach, S.; Unterweger, C.; Bober, P. Magnetoconductive poly(3,4-ethylenedioxythiophene)/maghemite adsorbent for the removal of Reactive Black 5 from aqueous media. Mater. Chem. Phys. 2022, 292, 126753. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Lucas, M.S.; Fernandes, J.R.; Tavares, P.B. Photocatalytic oxidation of Reactive Black 5 with UV-A LEDs. J. Environ. Chem. Eng. 2016, 4, 109–114. [Google Scholar] [CrossRef]
- Zhang, L.C.; Jia, Z.; Lyu, F.; Liang, S.X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manag. 2022, 316, 1152925. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.M.; Chen, Z.; Zhang, J.W.; Shan, D.; Wu, Y.; Bai, L.M.; Wang, B.Q. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Asghar, A.; Raman, A.A.A.; Daud, W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Goyal, R.; Singh, O.; Agrawal, A.; Samanta, C.; Sarkar, B. Advantages and limitations of catalytic oxidation with hydrogen peroxide: From bulk chemicals to lab scale process. Catal. Rev. 2020, 64, 229–285. [Google Scholar] [CrossRef]
- Yang, W.L.; Deng, Z.J.; Liu, L.B.; Zhou, K.C.; Sharel, P.E.; Meng, L.C.; Ma, L.; Wei, Q.P. Co-generation of hydroxyl and sulfate radicals via homogeneous and heterogeneous bi-catalysis with the EO-PS-EF tri-coupling system for efficient removal of refractory organic pollutants. Water Res. 2023, 243, 120312. [Google Scholar] [CrossRef]
- Bin, S.J.B.; Fong, K.S.; Chua, B.W.; Gupta, M. Mg-based bulk metallic glasses: A review of recent developments. J. Magnes. Alloys 2022, 10, 899–914. [Google Scholar] [CrossRef]
- Pei, L.; Zhang, X.; Yuan, Z. Application of Fe-Based Amorphous Alloy in Industrial Wastewater Treatment: A Review. J. Renew. Mater. 2022, 10, 969–991. [Google Scholar] [CrossRef]
- Jiang, J.L.; Jia, Z.; He, Q.; Wang, Q.; Lyu, F.; Zhang, L.C.; Liang, S.X.; Kruzic, J.J.; Lu, J. Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment. J. Alloys Compd. 2020, 822, 153574. [Google Scholar] [CrossRef]
- Chen, P.; Hu, X.; Qi, Y.; Wang, X.; Li, Z.; Zhao, L.; Liu, S.; Cui, C. Rapid Degradation of Azo Dyes by Melt-Spun Mg-Zn-Ca Metallic Glass in Artificial Seawater. Metals 2017, 7, 485. [Google Scholar] [CrossRef]
- Chen, Q.; Pang, J.; Yan, Z.C.; Hu, Y.H.; Guo, L.Y.; Zhang, H.; Zhang, L.C.; Wang, W.M. MgZn-based amorphous ribbon as a benign decolorizer in methyl blue solution. J. Non-Cryst. Solids 2020, 529, 119802. [Google Scholar] [CrossRef]
- Lu, S.H.; Wang, M.G.; Zhao, Z.K. Recent advances and future developments in Fe-based amorphous soft magnetic composites. J. Non-Cryst. Solids 2023, 616, 122440. [Google Scholar] [CrossRef]
- Pang, J.; Fu, F.; Li, W.; Zhu, L.; Tang, B. Fe-Mn binary oxide decorated diatomite for rapid decolorization of methylene blue with H2O2. Appl. Surf. Sci. 2019, 478, 54–61. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, Z.; Zhang, H.; Kim, K.; Wang, W. Role of Nanocrystallites of Al-Based Glasses and H2O2 in Degradation Azo Dyes. Materials 2020, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Duan, X.G.; Qin, P.; Zhang, W.C.; Wang, W.M.; Yang, C.; Sun, H.Q.; Wang, S.B.; Zhang, L.C. Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Adv. Funct. Mater. 2017, 27, 1702258. [Google Scholar] [CrossRef]
- Tang, M.; Lai, L.; Su, C.; Li, C.; Zhang, C.; Guo, S. MoCoB metallic glass microwire catalysts for highly efficient and pH-universal degradation of wastewater. NPJ Mater. Degrad. 2023, 7, 73. [Google Scholar] [CrossRef]
- Chen, Y.N.; Xiao, S.; Yang, Y.; Su, C.; Dai, C.; Tang, J.; Ruan, Y.; Guo, S. The rapid degradation of dye wastewater utilizing MoFeB amorphous alloy wires. Colloids Surf. A Physicochem. Eng. Asp. 2025, 726, 137831. [Google Scholar] [CrossRef]
- Li, R.; Liu, X.J.; Wang, H.; Wu, Y.; Chan, K.C.; Lu, Z.P. Flexible glassy grid structure for rapid degradation of azo dye. Mater. Des. 2018, 155, 346–351. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, X.H.; Zhang, Y.R.; Li, J.F.; Lim, T.T. Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system. Appl. Catal. B Environ. 2013, 136, 294–301. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Liu, X.J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z.P. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 2016, 6, 34213. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Q.; Sun, L.G.; Wang, Q.; Zhang, L.C.; Wu, G.; Luan, J.H.; Jiao, Z.B.; Wang, A.D.; Liang, S.X.; et al. Attractive In Situ Self-Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance. Adv. Funct. Mater. 2019, 29, 1807857. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Yun, L.; Chen, M.X.; Xu, D.D.; Cui, Z.Q.; Zeng, Q.S.; Lin, P.H.; Chu, C.L.; Shen, B.L. Competitive Effects of Structural Heterogeneity and Surface Chemical States on Catalytic Efficiency of FeSiBPCu Amorphous and Nanocrystalline Alloys. ACS Appl. Nano Mater. 2019, 2, 214–227. [Google Scholar] [CrossRef]
- Hou, L.; Wang, Q.; Fan, X.; Miao, F.; Yang, W.; Shen, B. Effect of Co addition on catalytic activity of FePCCu amorphous alloy for methylene blue degradation. New J. Chem. 2019, 43, 6126–6135. [Google Scholar] [CrossRef]
- Jia, Z.; Kang, J.; Zhang, W.C.; Wang, W.M.; Yang, C.; Sun, H.; Habibi, D.; Zhang, L.C. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl. Catal. B Environ. 2017, 204, 537–547. [Google Scholar] [CrossRef]
- Tang, Y.; Shao, Y.; Chen, N.; Yao, K.F. Rapid decomposition of Direct Blue 6 in neutral solution by Fe-B amorphous alloys. RSC Adv. 2015, 5, 6215–6221. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhu, Z.W.; Zhang, H.F.; Hu, Z.Q. Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron. J. Environ. Sci. 2012, 24, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Weng, N.; Wang, F.; Qin, F.X.; Tang, W.Y.; Dan, Z.H. Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture. Materials 2017, 10, 1001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Q.; Zhang, H.F.; Lv, M.Q.; Hu, Z.Q. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy. J. Non-Cryst. Solids 2010, 356, 1703–1706. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhu, Z.W.; Zhang, H.F.; Hu, Z.Q. On the decolorization property of Fe-Mo-Si-B alloys with different structures. J. Non-Cryst. Solids 2012, 358, 61–64. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.; Zhang, H. Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys. J. Phys. Chem. Solids 2017, 110, 152–160. [Google Scholar] [CrossRef]
- Liang, S.X.; Zhang, W.C.; Wang, W.M.; Jia, G.H.; Yang, W.M.; Zhang, L.C. Surface reactivation of FeNiPC metallic glass: A strategy for highly enhanced catalytic behavior. J. Phys. Chem. Solids 2019, 132, 89–98. [Google Scholar] [CrossRef]
- Chen, S.; Yang, G.; Luo, S.; Yin, S.; Jia, J.; Li, Z.; Gao, S.; Shao, Y.; Yao, K. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. J. Mater. Chem. A 2017, 5, 14230–14240. [Google Scholar] [CrossRef]
- Luo, X.K.; Li, R.; Zong, J.Z.; Zhang, Y.; Li, H.F.; Zhang, T. Enhanced degradation of azo dye by nanoporous-copper-decorated Mg-Cu-Y metallic glass powder through dealloying pretreatment. Appl. Surf. Sci. 2014, 305, 314–320. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhu, Z.W.; Zhang, H.F. Mg-based amorphous alloys for decolorization of azo dyes. Results Phys. 2017, 7, 2054–2056. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, Z.; Qin, X.D.; Li, Z.; Zhang, H. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation. J. Mater. Sci. Technol. 2020, 46, 88–97. [Google Scholar] [CrossRef]
- Zhang, S.D.; Wu, J.; Qi, W.B.; Wang, J.Q. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel. Corros. Sci. 2016, 110, 57–70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-N.; Song, B.; Zhang, C.; Li, T.; Su, C.; Guo, S. The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire. Metals 2025, 15, 1160. https://doi.org/10.3390/met15101160
Chen Y-N, Song B, Zhang C, Li T, Su C, Guo S. The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire. Metals. 2025; 15(10):1160. https://doi.org/10.3390/met15101160
Chicago/Turabian StyleChen, Ya-Nan, Bo Song, Chengquan Zhang, Tao Li, Chen Su, and Shengfeng Guo. 2025. "The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire" Metals 15, no. 10: 1160. https://doi.org/10.3390/met15101160
APA StyleChen, Y.-N., Song, B., Zhang, C., Li, T., Su, C., & Guo, S. (2025). The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire. Metals, 15(10), 1160. https://doi.org/10.3390/met15101160