Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Solution
2.2. Pipe Flow Loop Setup
2.3. Testing Methods
3. Results and Discussion
3.1. Influence of Velocity on Erosion-Corrosion Performance
3.2. Influence of Sand Concentrations on Erosion-Corrosion
3.3. Performance of Erosion-Corrosion at Different Angle Positions of a Pipe Section
3.4. Erosion-Corrosion Synergism
3.5. Observation of Corrosion Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.A.; Farhat, Z.N. The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium. Tribol. Int. 2013, 68, 26–34. [Google Scholar] [CrossRef]
- Qiao, Q.; Cheng, G.; Li, Y.; Wu, W.; Hu, H.; Huang, H. Corrosion failure analyses of an elbow and an elbow-to-pipe weld in a natural gas gathering pipeline. Eng. Fail. Anal. 2017, 82, 599–616. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Chen, Y.; Li, P.; Wang, Q. Erosion-corrosion coupling analysis of shale gas production pipe. Eng. Fail. Anal. 2022, 138, 106308. [Google Scholar] [CrossRef]
- Jones, M.; Llewellyn, R.J. Erosion-corrosion assessment of materials for use in the resources industry. Wear 2009, 267, 2003–2009. [Google Scholar] [CrossRef]
- Tang, X.; Xu, L.Y.; Cheng, Y.F. Electrochemical corrosion behavior of X-65 steel in the simulated oil–sand slurry. II: Synergism of erosion and corrosion. Corros. Sci. 2008, 50, 1469–1474. [Google Scholar] [CrossRef]
- Lu, B.T.; Luo, J.L.; Guo, H.X.; Mao, L.C. Erosion-enhanced corrosion of carbon steel at passive state. Corros. Sci. 2011, 53, 432–440. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Li, C.; Luo, P.; Song, X.; Wang, Y.; Hu, X. Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline. J. Nat. Gas Sci. Eng. 2021, 89, 103871. [Google Scholar] [CrossRef]
- El-Sayed, M.H. Flow enhanced corrosion of water injection pipelines. Eng. Fail. Anal. 2015, 50, 1–6. [Google Scholar] [CrossRef]
- Aminul Islam, M.; Farhat, Z.N. Mechanical and Electrochemical Synergism of API X42 Pipeline Steel During Erosion–Corrosion. J. Bio-Tribo-Corros. 2015, 1, 26. [Google Scholar] [CrossRef]
- Demoz, A.; Dabros, T. Relationship between shear stress on the walls of a pipe and an impinging jet. Corros. Sci. 2008, 50, 3241–3246. [Google Scholar] [CrossRef]
- Ilman, M.N.; Kusmono, K. Analysis of internal corrosion in subsea oil pipeline. Case Stud. Eng. Fail. Anal. 2014, 2, 1–8. [Google Scholar]
- Jiang, X.; Xu, K.; Guan, X.; Qu, D.; Song, X.; Zhang, Q.; Yu, C.; Hua, J. A comparative study on the corrosion of gathering pipelines in two sections of a shale gas field. Eng. Fail. Anal. 2021, 121, 105179. [Google Scholar] [CrossRef]
- Khan, R.; Ya, H.H.; Pao, W.; Majid, M.A.A.; Ahmed, T.; Ahmad, A.; Alam, M.A.; Azeem, M.; Iftikhar, H. Effect of Sand Fines Concentration on the Erosion-Corrosion Mechanism of Carbon Steel 90 degrees Elbow Pipe in Slug Flow. Materials 2020, 13, 4601. [Google Scholar] [CrossRef]
- Thaker, J.; Banerjee, J. Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe. J. Pet. Sci. Eng. 2016, 145, 298–320. [Google Scholar] [CrossRef]
- Nassef, A.; Keller, M.; Hassani, S.; Shirazi, S.; Roberts, K. A Review of Erosion-Corrosion Models for the Oil and Gas Industry Applications. In Recent Developments in Analytical Techniques for Corrosion Research; Springer: Tulsa, OK, USA, 2022; pp. 205–233. [Google Scholar]
- Wongpanya, P.; Saramas, Y.; Chumkratoke, C.; Wannakomol, A. Erosion–corrosion behaviors of 1045 and J55 steels in crude oil. J. Pet. Sci. Eng. 2020, 189, 106965. [Google Scholar] [CrossRef]
- Peng, W.; Cao, X.; Ji, J.; Jin, X.; Wang, Q. Erosion of Pipe Bend and Plugged Tee by Solid Particles in Oil-water-sand multiphase flow. Corros. Prot. 2016, 37, 131–136. (In Chinese) [Google Scholar]
- Stack, M.M.; Abdulrahman, G.H. Mapping erosion–corrosion of carbon steel in oil–water solutions: Effects of velocity and applied potential. Wear 2012, 274–275, 401–413. [Google Scholar] [CrossRef]
- Meng, Q.; Han, W.; Wang, X.; Li, S.; Wang, C. Corrosive Wear Property of Material of Oil Tubing in Sand-Oil-Water Liquid. Oil Field Equip. 2008, 37, 52–54. (In Chinese) [Google Scholar]
- Li, Q.; Hu, H.; Cheng, Y.F. Corrosion of pipelines in CO2 saturated oil-water emulsion flow studied by electrochemical measurements and computational fluid dynamics modeling. J. Pet. Sci. Eng. 2016, 147, 408–415. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, L.; Zhou, Q.; Wang, X.; Tan, M.Y.; Huang, Y. An Overview of Major Experimental Methods and Apparatus for Measuring and Investigating Erosion-Corrosion of Ferrous-Based Steels. Metals 2020, 10, 180. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Hu, W. Erosion–corrosion behavior of X65 carbon steel in oilfield formation water. Int. J. Electrochem. Sci. 2019, 14, 262–278. [Google Scholar] [CrossRef]
- Cai, G.; Zhu, S.; Li, J.; Feng, Z.; Lv, L. Influencing Factors of Internal Corrosion of 20# Oil Field Gathering and Transmission Pipeline. Corros. Prot. 2016, 37, 653–656. (In Chinese) [Google Scholar]
- Liu, Y.; Jiang, H.; Xu, T.; Li, Y. CO2 corrosion prediction on 20# steel under the influence of corrosion product film. Petroleum 2021, in press. [Google Scholar]
- Li, M.; Ma, Y.; Yang, W.; Cai, L.; Liang, C. Influencing Factors of Internal Corrosion of Oil Gathering and Transportation Pipelines Based on Statistical Data. Pet. Tubul. Goods Instrum. 2022, 8, 43–47. (In Chinese) [Google Scholar]
- Cui, P. Research on main influencing factors of internal corrosion of 20# oil field gathering and transmission pipeline. Pet. Tubul. Goods Instrum. 2022, 8, 42–46. (In Chinese) [Google Scholar]
- Liu, J.; BaKeDaShi, W.; Li, Z.; Xu, Y.; Ji, W.; Zhang, C.; Cui, G.; Zhang, R. Effect of flow velocity on erosion–corrosion of 90-degree horizontal elbow. Wear 2017, 376–377, 516–525. [Google Scholar] [CrossRef]
- ASTM G1-03; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2011.
- Collins, T. Particle Analysis. ImageJ Docs. 2022. Available online: https://imagej.net/imaging/particle-analysis (accessed on 19 November 2022).
- Barker, R.; Burkle, D.; Charpentier, T.; Thompson, H.; Neville, A. A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corros. Sci. 2018, 142, 312–341. [Google Scholar] [CrossRef]
- Aminul Islam, M.; Farhat, Z.N.; Ahmed, E.M.; Alfantazi, A.M. Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel. Wear 2013, 302, 1592–1601. [Google Scholar] [CrossRef]
- Leng, J.; Frank Cheng, Y.; Liao, K.; Huang, Y.; Zhou, F.; Zhao, S.; Liu, X.; Zou, Q. Synergistic effect of O2-Cl− on localized corrosion failure of L245N pipeline in CO2-O2-Cl−− environment. Eng. Fail. Anal. 2022, 138, 106332. [Google Scholar] [CrossRef]
- Luo, Y. In Field Electrochemical Detection and Erosion-Corrosion Investigation of Metallic Materials in Marine Environment. Ph.D. Thesis, Tianjing University, Tianjin, China, 2007. (In Chinese). [Google Scholar]
- Harvey, T.J.; Wharton, J.A.; Wood, R.J.K. Development of synergy model for erosion–corrosion of carbon steel in a slurry pot. Tribol. Mater. Surf. Interfaces 2013, 1, 33–47. [Google Scholar] [CrossRef]
- Wood, R.J.K. Erosion–corrosion interactions and their effect on marine and offshore materials. Wear 2006, 261, 1012–1023. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Gao, S.; Wang, X.; Huang, Y. Exploring the effects of sand impacts and anodic dissolution on localized erosion-corrosion in sand entraining electrolyte. Wear 2021, 478–479, 203907. [Google Scholar] [CrossRef]
- Zhang, G.A.; Cheng, Y.F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water. Electrochim. Acta 2011, 56, 1676–1685. [Google Scholar] [CrossRef]
Constituents | Concentration (mg/L) |
---|---|
Na++K+ | 14,887 |
Ca2+ | 1523 |
Mg2+ | 369 |
NH4+ | 115 |
Cl− | 25,098 |
SO42− | 2257 |
HCO3− | 308 |
NO3− | 105 |
- | C | E | ΔC | ΔE | T |
---|---|---|---|---|---|
Weight loss (mg) | 5.7 | 8.5 | 2.0 | −4.2 | 12.0 |
Portion | 47.50% | 70.83% | 16.67% | −35.00% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, B. Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow. Metals 2023, 13, 80. https://doi.org/10.3390/met13010080
Li Q, Liu B. Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow. Metals. 2023; 13(1):80. https://doi.org/10.3390/met13010080
Chicago/Turabian StyleLi, Qiang, and Bingcheng Liu. 2023. "Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow" Metals 13, no. 1: 80. https://doi.org/10.3390/met13010080
APA StyleLi, Q., & Liu, B. (2023). Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow. Metals, 13(1), 80. https://doi.org/10.3390/met13010080