Review on Steel Enhancement for Nuclear RPVs
Abstract
:1. Introduction
2. Materials and Methods
3. Irradiation and Thermal Ageing of RPV Steels
4. The Chemical Composition Effect on Radiation Embrittlement
4.1. The Effect of Copper
4.2. The Effect of Phosphorous
4.3. The Effect of Nickel
4.4. The Effect of Mn and Ni
4.5. The Effect of Vanadium
4.6. The Effect of Other Polluting Elements
5. Future Reactor Steels
- ⮚
- The elaboration of neutron radiation tough ferrite-martensitic steels with reduced activation (RAFM). These steels are alloyed with 9–14% Cr and contain some percent of other low activation elements;
- ⮚
- Another way to use oxide dispersed steels for high temperature vessels, but these steels are still in the research laboratories, and the industrial application of them is not allowed yet.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- English, C.; Sevini, F.; Frund, J.-M.; Langer, R.; Cowan, J.; Gillemot, F.; Brumovsky, M.; Nenonen, P.; Ballesteros, A.; Bacon, D. Phosphorus Influence on Steel Ageing (PISA). In Proceedings of the 5th International Symposium on “EU Research in Reactor Safety”, Luxemburg, 10–13 November 2003; pp. 107–113. [Google Scholar]
- Altstadt, E.; Keim, E.; Hein, H.; Serrano, M.; Bergner, F.; Viehrig, H.; Ballesteros Avila, A.; Chaouadi, R.; Wilford, K. FP7 Project Longlife: Overview of results and implications. Nucl. Eng. Des. 2014, 278, 753–757. [Google Scholar] [CrossRef]
- Kollury, M.; ten Pierick, P.; Bakker, T.; Straathof, B.T.; Magielsen, A.J.; Szaraz, Z.; D’Agata, E.; Ohms, C.; Martin, O. Influence of Ni-Mn contents on the embrittlement of PWR RPV model steels irradiated to high fluences relevant for LTO beyond 60 years. J. Nucl. Mater. 2021, 553, 153036. [Google Scholar] [CrossRef]
- Debarberis, L.; Kryukov, A.; Gillemot, F.; Valo, M.; Morozov, A.; Brumovsky, M.; Acosta, B.; Sevini, F. Use of a Semi-Mechanistic Analytical Model to Analyze Radiation Embrittlement of Model Alloys: Cu and P Effects. Strength Mater. 2004, 36, 269–273. [Google Scholar] [CrossRef]
- Debarberis, L.; Kryukov, A.; Gillemot, F.; Acosta, B.; Sevini, F. Semi-mechanistic analytical model for radiation embrittlement and re-embrittlement data analysis. Int. J. Press. Vessel. Pip. 2005, 82, 195–200. [Google Scholar] [CrossRef]
- Gillemot, F.; Horváth, M.; Barroso, P.S.; Fekete, T.; Horváth, Á. Effect of Thermal Ageing on NPP Steels. In Progress Report on Research Activities AEKI Yearbook; Atomic Energy Research Institute: Budapest, Hungary, 2008; p. 49. [Google Scholar]
- Gillemot, F.; Oszvald, F.; Kresz, N.; Trampus, P. Effects of Long Term Irradiation on 15Ch2MFA type Reactor Pressure Vessel Steels. In Proceedings of the IGRDM-15 Conference, Budapest, Hungary, 12–16 October 2009. [Google Scholar]
- Smidt, F.; Sprague, J. Property Changes Resulting from Impurity-Defect Interactions in Iron and Pressure Vessel Steel Alloys. In Effects of Radiation on Substructure and Mechanical Properties of Metals and Alloys; Moteff, J., Ed.; STP529 ASTM International: Los Angeles, CA, USA, 1973; pp. 78–91. [Google Scholar]
- Hawthorne, J.R. Irradiation Embrittlement. In Treatise on Materials Science and Technology; Briant, C.L., Banerji, S.K., Eds.; Academic: New York, NY, USA, 1983; Volume 25, pp. 461–524. [Google Scholar]
- Brumovsky, M.; Gillemot, F.; Kryukov, A.; Levit, V. Results from the Phase III of the IAEA Coordinated Research Programme Optimizing of Reactor Pressure Vessel Surveillance Programmes and Their Analysis. In Proceedings of the (IWG-LMNPP-95/5) IAEA Specialist Meeting, “Irradiation Embrittlement and Mitigation”, Espoo, Finland, 23–26 October 1995. Session 5, Paper 2. [Google Scholar]
- Corwin, W.R. Heavy Section Steel Irradiation Program NUREG CR-5591. Int. J. Press. Vessel. Pip. 1997, 74, 189. [Google Scholar]
- Fisher, S.B.; Harbottle, J.E.; Aldridge, N. Radiation Hardening in Magnox Pressure Vessel Steels. Philos. Trans. R. Soc. London Ser. A 1985, 315, 301–332. [Google Scholar]
- Xu, Q.; Yoshiie, T.; Sato, K. Dose dependence of Cu precipitate formation in Fe−Cu model alloys irradiated with fission neutrons. Phys. Rev. B 2006, 73, 134115. [Google Scholar] [CrossRef] [Green Version]
- Bergner, F.; Ulbricht, A.; Viehrig, H.W. Acceleration of Irradiation Hardening of Low Copper reactor pressure vessel observed by means SANS and tensile testing. Philos. Mag. Lett. 2009, 89, 795–805. [Google Scholar] [CrossRef]
- Nikolaeva, A.V.; Nikolaev, Y.A.; Kryukov, A. Grain boundary embrittlement due to reactor pressure vessel annealing. J. Nucl. Mater. 1994, 211, 236–243. [Google Scholar] [CrossRef]
- Steele, L.E.; Potapovs, U. Radiation Embrittlement of Reactor Vessel Materials. Nucl. Eng. Des. 1968, 8, 58–70. [Google Scholar] [CrossRef]
- Jones, R.B.; Buswell, J.T. Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors; Theus, O.J., Weeks, J.R., Eds.; The Metallurgical Society: Warrendale, PA, USA, 1987; pp. 111–120. [Google Scholar]
- Odette, G.R.; Wirtz, B.D. A computational microscopy study of nanostructural evolution in irradiated pressure vessel steel. J. Nucl. Mater. 1997, 251, 157–171. [Google Scholar] [CrossRef]
- Odette, G.R. On the Dominant Mechanism of Irradiation Embrittlement of Reactor Pressure Vessel Steels. Scr. Metall. 1983, 17, 1183. [Google Scholar] [CrossRef]
- Nikolaev, V.; Badanin, A. Impurity Elements Influence on Embrittlement of Ferrite Perlite Steel after Neutron Irradiation and Thermal Ageing. Metallü 1975, 2, 126. [Google Scholar]
- Bergner, F.; Lambrecht, M.; Ulbricht, A.; Almazouzi, A. Comparative small-angle neutron scattering study of Neutron Irradiated Fe, Fe based alloys and Pressure vessel steel. J. Nucl. Mater. 2010, 399, 129–136. [Google Scholar] [CrossRef]
- Amaev, A.; Kryukov, A.; Levit, V.; Sokolov, M. Radiation Stability of WWER440 materials. ASTM STP 1993, 1170, 9–21. [Google Scholar]
- Miller, M.; Kocik, J. Atom Probe Tomography of 15KhMFT Cr-Mo-V Surveillance Specimens. IWG LMNPP 2001, 99, 432–435. [Google Scholar]
C% | Si% | Mn% | P% | S% | Ni% | Cr% | Mo% | V% | Cu% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SA508 | min | 0.15. | 0.15 | 0.66 | 0.006 | 0.37 | 0.31 | 0.37 | - | 0.03 | |
max | 0.21 | 0.3 | 1.59 | 0.012 | 0.85 | 0.45 | 0.68 | 0.01 | 0.10 | ||
16MND5 | min | 0.15 | 0.16 | 1.21 | 0.003 | 0.001 | 0.68 | 0.15 | 0.47 | <0.001 | 0.04 |
max | 0.18 | 0.34 | 1.50 | 0.012 | 0.016 | 0.80 | 0.28 | 0.56 | 0.025 | 0.09 | |
22NiMoCr37 | min | 0.17 | 0.15 | 0.50 | 0.60 | 0.30 | 0.50 | ||||
max | 0.25 | 0.35 | 1.00 | 0.02 | 0.02 | 1.20 | 0.50 | 0.80 | 0.03 | 0.18 | |
ASTM A-20/20M | min | 0.19 | 0.22 | 1.32 | 0.006 | 0.56 | 0.03 | 0.51 | 0.01 | 0.02 | |
max | 0.26 | 0.27 | 1.56 | 0.011 | 0.61 | 0.16 | 0.67 | 0.05 | 0.06 | ||
20MnMoNi-55 | min | 0.17 | 1.00 | 0.40 | 0.45 | ||||||
max | 0.23 | 0.35 | 1.50 | 0.020 | 0.020 | 0.8 | 0.3 | 0.60 | 0.18 | ||
SA-302 B | min | 0.13 | 1.07 | - | - | - | 0.41 | ||||
max | 0.25 | 0.45 | 1.62 | 0.035 | 0.035 | - | 0.64 | ||||
SA533B | min | - | 0.15 | 0.8 | - | - | 0.37 | - | 0.35 | - | - |
max | 0.25 | 0.60 | 1.8 | 0.035 | 0.035 | 0.85 | - | 0.65 | - | - | |
16Mo 5 | min | 0.12 | 0.15 | 0.50 | - | - | - | - | 0.45 | - | - |
max | 0.20 | 0.50 | 0.80 | 0.04 | 0.04 | - | - | 0.65 | - | - | |
15Kh2MFA | min | 0.13 | 0.17 | 0.30 | 2.50 | 0.60 | 0.25 | ||||
max | 0.18 | 0.37 | 0.60 | 0.025 | 0.025 | 0.40 | 3.00 | 0.80 | 0.35 | ||
15Kh2NMFA | min | 0.13 | 0.17 | 0.30 | 1.00 | 1.80 | 0.50 | ||||
max | 0.18 | 0.37 | 0.60 | 0.020 | 0.020 | 1.50 | 2.30 | 0.70 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillemot, F. Review on Steel Enhancement for Nuclear RPVs. Metals 2021, 11, 2008. https://doi.org/10.3390/met11122008
Gillemot F. Review on Steel Enhancement for Nuclear RPVs. Metals. 2021; 11(12):2008. https://doi.org/10.3390/met11122008
Chicago/Turabian StyleGillemot, Ferenc. 2021. "Review on Steel Enhancement for Nuclear RPVs" Metals 11, no. 12: 2008. https://doi.org/10.3390/met11122008
APA StyleGillemot, F. (2021). Review on Steel Enhancement for Nuclear RPVs. Metals, 11(12), 2008. https://doi.org/10.3390/met11122008