Enhanced Strength and Ductility by Introducing Nanobainitic Ferrite in Bainitic Steel Used in Sports Equipment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties
3.2. Volume Fraction and Carbon Concentration of RA
3.3. Microstructure
3.4. Kinetics of Bainite Transformation
4. Discussion
4.1. The Kinetics of Bainite Transformation
4.2. The Thermodynamics of Carbon Diffusion
4.3. The Stability of Retained Austenite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Rivas, L.; Garcia-Mateo, C.; Sourmail, T.; Kuntz, M.; Rementeria, R.; Caballero, F.G. Ductility of Nanostructured Bainite. Metals 2016, 6, 302. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, H.; Gui, X.; Tan, Z.; Bai, B.; Weng, Y. Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process. Acta Mater. 2015, 101, 31–39. [Google Scholar] [CrossRef]
- Sugimoto, K.I.; Iida, T.; Sakaguchi, J.; Kashima, T. RA charactericstics and tensile properties in a TRIP bainitic sheet steels. ISIJ Int. 2000, 40, 902–908. [Google Scholar] [CrossRef]
- Caballero, F.G.; Roelofs, H.; Hasler, S.; Capdevila, C.; Chao, J.; Cornide, J.; Garcia-Mateo, C. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater. Sci. Technol. 2012, 28, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H.; Christian, J.W. Bainite in Steels. Metall. Mater. Trans. A 1990, 21, 767–797. [Google Scholar] [CrossRef]
- Wang, M.-M.; Hell, J.C.; Tasan, C. Martensite size effects on damage in quenching and partitioning steels. Scr. Mater. 2017, 138, 1–5. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Nanostructured bainite, Proceedings of the Royal Society A: Mathematical. Phys. Eng. Sci. 2009, 466, 3–18. [Google Scholar]
- Hase, K.; Garcia-Mateo, C.; Bhadeshia, H. Bimodal size-distribution of bainite plates. Mater. Sci. Eng. A 2006, 438-440, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Wu, K.M.; Wan, X.L.; Rodionova, I.; Shirzadi, A.A.; Zhang, F.C. Novel method for refinement of retained austenite in micro/nano-structured bainitic steels. Mater. Sci. Technol. 2017, 33, 1360–1365. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.; Zuyao, X.; Jin, X.; Rong, Y. Strengthening and Toughening Mechanisms of Quenching-Partitioning-Tempering (QPT) Steels. J. Alloys Compd. 2012, 577, S568–S571. [Google Scholar]
- Hsu, T.Y. Quenching–partitioning–tempering process for ultra-high strength steel. Int. Heat Treat. Surf. Eng. 2008, 2, 64–67. [Google Scholar]
- He, S.; He, B.; Zhu, K.; Huang, M. On the correlation among dislocation density, lath thickness and yield stress of bainite. Acta Mater. 2017, 135, 382–389. [Google Scholar] [CrossRef]
- Sampath, S.; Rementeria, R.; Huang, X.; Poplawsky, J.; Garcia-Mateo, C.; Caballero, F.; Janisch, R. The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite. J. Alloys Compd. 2016, 673, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Miller, M.; Garcia-Mateo, C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Mater. 2010, 58, 2338–2343. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Yen, H.-W.; Miller, M.; Yang, J.-R.; Cornide, J.; Garcia-Mateo, C. Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater. 2011, 59, 6117–6123. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Jiménez, J.A.; Yen, H.-W.; Miller, M.; Morales-Rivas, L.; Kuntz, M.; Ringer, S.; Yang, J.-R.; Caballero, F. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality. Acta Mater. 2015, 91, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Miller, M.; Garcia-Mateo, C.; Cornide, J.; Santofimia, M. Temperature dependence of carbon supersaturation of ferrite in bainitic steels. Scr. Mater. 2012, 67, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Miller, M.; Garcia-Mateo, C. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation. Mater. Chem. Phys. 2014, 146, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Peet, M.J.; Babu, S.; Miller, M.K.; Bhadeshia, H.K. Tempering of Low-Temperature Bainite. Metall. Mater. Trans. A 2017, 48A, 3410–3418. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Miller, M.; Clarke, A.; Garcia-Mateo, C. Examination of carbon partitioning into austenite during tempering of bainite. Scr. Mater. 2010, 63, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H.; Edmonds, D.V. Bainite in silicon steels: New composition–property approach Part 1. Met. Sci. 1983, 17, 411–419. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Peet, M.; Caballero, F.; Bhadeshia, H. Tempering of hard mixture of bainitic ferrite and austenite. Mater. Sci. Technol. 2004, 20, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H.; David, S.A.; Vitek, J.M.; Reed, R.W. Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Met. Sci. J. 1991, 7, 686–698. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Ungár, T.; Victoria, M.; Marmy, P.; Hanák, P.; Szenes, G. A new procedure of X-ray line profile analysis applied to study the dislocation structure and subgrain size-distributions in fatigued MANET steel. J. Nucl. Mater. 2000, 276, 278–282. [Google Scholar] [CrossRef]
- Renzetti, R.; Sandim, H.; Bolmaro, R.; Suzuki, P.A.; Möslang, A. X-ray evaluation of dislocation density in ODS-Eurofer steel. Mater. Sci. Eng. A 2012, 534, 142–146. [Google Scholar] [CrossRef]
- Sugimoto, K.-I.; Kobayashi, M.; Hashimoto, S.-I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Met. Mater. Trans. A 1992, 23, 3085–3091. [Google Scholar] [CrossRef]
- Nishikawa, A.S.; Santofimia, M.J.; Sietsma, J.; Goldenstein, H. Influence of bainite reaction on the kinetics of carbon redistribution during the Quenching and Partitioning process. Acta Mater. 2018, 142, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H. Anomalies in carbon concentration determinations from nanostructured bainite. Mater. Sci. Technol. 2014, 31, 758–763. [Google Scholar] [CrossRef]
- Rementeria, R.; Jiménez, J.A.; Allain, S.Y.P.; Geandier, G.; Poplawsky, J.; Guo, W.; Urones-Garrote, E.; Garcia-Mateo, C.; Caballero, F.G. Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Mater. 2017, 133, 333–345. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, P.; Chen, L.; Yuan, F.; Zhu, Y.T. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 2014, 111, 7197–7201. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, W.; Hu, J.C.; Song, H.M.; Jin, X. Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance. Int. J. Plast. 2017, 88, 53–69. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Liu, W.; Wang, X.; Hua, X.; Liu, H.; Jin, X. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Mater. 2018, 146, 126–141. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.J.; Jiang, F.; Ding, X.; Sun, Y.J.; Sun, J.; Ma, E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 2013, 12, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, A.; Rosen, A.; Karch, J.; Gleiter, H. On the validity of the hall-petch relationship in nanocrystalline materials. Scr. Met. 1989, 23, 1679–1683. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, W.; Wang, L.; Zhou, S.; Jin, X. The Deformation Behavior Analysis and Mechanical Modeling of Step/Intercritical Quenching and Partitioning-Treated Multiphase Steels. Met. Mater. Trans. A 2016, 47, 3943–3955. [Google Scholar] [CrossRef]
- Zhao, H.; Li, W.; Zhu, X.; Lu, X.; Wang, L.; Zhou, S.; Jin, X. Analysis of the relationship between retained austenite locations and the deformation behavior of quenching and partitioning treated steels. Mater. Sci. Eng. A 2016, 649, 18–26. [Google Scholar] [CrossRef]
Samples | Rp0.2/MPa | Rm/MPa | Uniform Elongation/% | Total Elongation/% |
---|---|---|---|---|
BA | 706 ± 10 | 1689 ± 10 | 16.0 ± 3 | 16.9 ± 3 |
BAQ | 1070 ± 15 | 1616 ± 10 | 13.0 ± 3 | 14.0 ± 2 |
BAP | 1180 ± 10 | 1680 ± 10 | 28.0 ± 2 | 33.0 ± 2 |
Vγ/% | Xγ/wt% | Xα/wt% | ρα/m−2 | |
---|---|---|---|---|
BA | 47.0 ± 5 | 1.30 ± 0.3 | 0.018 ± 0.01 | 1.33 × 1015 |
BAQ | 47.0 ± 5 | 1.29 ± 0.2 | 0.024 ± 0.01 | 1.70 × 1015 |
BAP | 50.5 ± 5 | 1.66 ± 0.3 | 0.010 ± 0.01 | 0.09 × 1015 |
Samples | ρ/m−2 | Cdefects/wt.% | ||
---|---|---|---|---|
BAQ | 1.70 × 1015 | 0.14 | 0.014 | 0.154 |
BAP | 0.09 × 1015 | 0.07 | 0.007 | 0.077 |
Cγ-BAQ/wt.% | Cdissolved+/wt.% | Cdefects+/wt.% | Cγ-increased/wt.% |
---|---|---|---|
1.29 ± 0.2 | 0.03 | 0.12 | 1.44 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Hong, Z.; Li, Y.; Jia, X.; Yin, Z. Enhanced Strength and Ductility by Introducing Nanobainitic Ferrite in Bainitic Steel Used in Sports Equipment. Metals 2021, 11, 2007. https://doi.org/10.3390/met11122007
Meng H, Hong Z, Li Y, Jia X, Yin Z. Enhanced Strength and Ductility by Introducing Nanobainitic Ferrite in Bainitic Steel Used in Sports Equipment. Metals. 2021; 11(12):2007. https://doi.org/10.3390/met11122007
Chicago/Turabian StyleMeng, Han, Zhenjun Hong, Yu Li, Xiaoshuai Jia, and Zhihua Yin. 2021. "Enhanced Strength and Ductility by Introducing Nanobainitic Ferrite in Bainitic Steel Used in Sports Equipment" Metals 11, no. 12: 2007. https://doi.org/10.3390/met11122007
APA StyleMeng, H., Hong, Z., Li, Y., Jia, X., & Yin, Z. (2021). Enhanced Strength and Ductility by Introducing Nanobainitic Ferrite in Bainitic Steel Used in Sports Equipment. Metals, 11(12), 2007. https://doi.org/10.3390/met11122007