Return to Basketball Play Following COVID-19 Lockdown
Abstract
:1. Introduction
2. Basketball Retraining after a Significant Lay-Off in the COVID-19 Age
2.1. COVID-19 Transmission Prophylaxis
2.2. Principles of Basketball Training after a Significant Lay-Off
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---11-may-2021 (accessed on 27 May 2021).
- Parnell, D.; Widdop, P.; Bond, A.; Wilson, R. COVID-19, networks and sport. Manag. Sport Leis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bourdas, D.; Zacharakis, E. Impact of Lockdown on Physical Activity in the Early COVID-19 Presence: Greece National Cross-Sectional Study. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Zacharakis, E.D. Evolution of changes in physical activity over lockdown time: Physical activity datasets of four independent adult sample groups corresponding to each of the last four of the six COVID-19 lockdown weeks in Greece. Data Brief 2020, 32, 106301. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Zacharakis, E.D. Impact of COVID-19 Lockdown on Physical Activity in a Sample of Greek Adults. Sports 2020, 8, 139. [Google Scholar] [CrossRef]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef] [Green Version]
- Paulauskas, R.; Kamarauskas, P.; Nekriošius, R.; Bigwood, N.M. Physical and physiological response to different modes of repeated sprint exercises in basketball players. J. Hum. Kinet. 2020, 72, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, R.; Ingham, S.; Pedlar, C.; Whyte, G. The detraining and retraining of an elite rower: A case study. J. Sci. Med. Sport 2005, 8, 314–320. [Google Scholar] [CrossRef]
- Joo, C.H. The effects of short term detraining and retraining on physical fitness in elite soccer players. PLoS ONE 2018, 13, e0196212. [Google Scholar] [CrossRef] [Green Version]
- Caparrós, T.; Casals, M.; Solana, Á.; Pena, J. Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games. J. Sports Sci. Med. 2018, 17, 289–297. [Google Scholar] [PubMed]
- Purdam, C.; Drew, M.; Blanch, P.; Chapman, D.; Gabbett, T.; Gore, C.; Hughes, D.; Kelly, T.; Mitchell, J.; Rice, T.; et al. Pre-scription of Training Load in Relation to Loading and Unloading Phases of Training; Australian Institute of Sport: Bruce, Australia, 2015. [Google Scholar]
- International Basketball Federation. Return to Basketball, FIBA COVID-19 Restart Guidelines, Version 2.0. 2020. Available online: http://www.fiba.basketball/news/fiba-revamps-restart-guidelines-for-return-to-basketball (accessed on 27 May 2021).
- Minnesota Youth Basketball Alliance. Safe Play: Back to the Hardwood COVID-19 Competition, Safety Requirements and Recommendations. 2021. Available online: http://www.fiba.basketball/news/fiba-revamps-restart-guidelines-for-return-to-basketball (accessed on 27 May 2021).
- County of Los Angeles Department of Public Health. Reopening Protocol for Youth and Adult Recreational Sports Leagues. 2021. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiVn_OFw-7wAhXqhP0HHcqkC9kQFnoECAQQAA&url=http%3A%2F%2Fpublichealth.lacounty.gov%2Fmedia%2Fcoronavirus%2Fdocs%2Fprotocols%2FReopening_SportsLeagues.pdf&usg=AOvVaw0gAYvgbZOC1T-UympokkZT (accessed on 27 May 2021).
- National Collegiate Athletic Association. NCAA Issues Updated Return-to-Sport Guidelines. 2021. Available online: https://www.ncaa.org/about/resources/media-center/news/ncaa-issues-updated-return-sport-guidelines (accessed on 27 May 2021).
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628–1631. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.; Malizia, F.; Van Druenen, T.; Marchal, T. Towards Aerodynamically Equivalent COVID-19 1.5 m Social Distancing for Walking and Running. 2020. Available online: http://www.urbanphysics.net/Social%20Distancing%20v20_White_Paper.pdf (accessed on 14 April 2020).
- World Health Organization (WHO). Novel Coronavirus (2019-Ncov) Advice for the Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 1 October 2020).
- Feng, S.; Shen, C.; Xia, N.; Song, W.; Fan, M.; Cowling, B.J. Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 2020, 8, 434–436. [Google Scholar] [CrossRef]
- McGuigan, M. Principles of test selection and administration. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Travis, T.N., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 249–258. ISBN 978-1-4925-0162-6. [Google Scholar]
- Wen, N.; Dalbo, V.J.; Burgos, B.; Pyne, D.B.; Scanlan, A.T. Power testing in basketball: Current practice and future recommendations. J. Strength Cond. Res. 2018, 32, 2677–2691. [Google Scholar] [CrossRef] [PubMed]
- Nieß, A.M.; Bloch, W.; Friedmann-Bette, B.; Grim, C.; Gärtner, B.; Halle, M.; Hirschmüller, A.; Kopp, C.; Meyer, T.; Niebauer, J.; et al. Recommendations for exercise testing in sports medicine during the current pandemic situation (SARS-CoV-2/COVID-19). Ger. J. Sports Med. 2020, 71, E1–E2. [Google Scholar] [CrossRef]
- Bringard, A.; Pogliaghi, S.; Adami, A.; De Roia, G.; Lador, F.; Lucini, D.; Pizzinelli, P.; Capelli, C.; Ferretti, G. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir. Physiol. Neurobiol. 2010, 172, 53–62. [Google Scholar] [CrossRef]
- Crisafulli, A.; Melis, F.; Tocco, F.; Laconi, P.; Lai, C.; Concu, A. External mechanical work versus oxidative energy consumption ratio during a basketball field test. J. Sports Med. Phys. Fit. 2002, 42, 409–417. [Google Scholar]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sports 2009, 19, 425–432. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Epstein, S.; Einbinder, M.; Weinstein, Y. The influence of aerobic capacity on anaerobic performance and re-covery indices in basketball players. J. Strength Cond. Res. 1999, 13, 407–411. [Google Scholar]
- Hoffman, J.R.; Maresh, C.M. Physiology of basketball. In Exercise and Sport Science; Garrett, W.E., Kirkendall, D.T., Eds.; Lip-pincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 733–744. ISBN 978-0-683-03421-9. [Google Scholar]
- Pojskić, H.; Šeparović, V.; Užičanin, E.; Muratović, M.; Mačković, S. Positional Role Differences in the Aerobic and Anaerobic Power of Elite Basketball Players. J. Hum. Kinet. 2015, 49, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; d’Ottavio, S.; Manzi, V.; Annino, G.; Colli, R.; Belardinelli, R.; Lacalaprice, F. HR and VO2 responses during basketball drills. In Book of Abstracts of the 10th Annual Congress of the European College of Sport Science; Dikic, N., Zinanic, S., Astojic, S., Tornjanski, Z., Eds.; Ministry of Education and Sports: Belgrade, Serbia, 2005; p. 160. [Google Scholar]
- Bangsbo, J.; Mohr, M.; Poulsen, A.; Perez-Gomez, J.; Krustrup, P. Training and testing the elite athlete. J. Exer. Sci. Fit. 2006, 4, 1–14. [Google Scholar]
- Delextrat, A.; Kraiem, S. Heart-Rate Responses by Playing Position During Ball Drills in Basketball. Int. J. Sports Physiol. Perform. 2013, 8, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Marinković, D.; Pavlović, S. The differences in aerobic capacity of basketball players in different playing positions. Ser. Physic. Educ. Sport 2013, 11, 73–80. [Google Scholar]
- Montgomery, P.G.; Pyne, D.B.; Minahan, C.L. The Physical and Physiological Demands of Basketball Training and Competition. Int. J. Sports Physiol. Perform. 2010, 5, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggioni, M.A.; Bonato, M.; Stahn, A.; La Torre, A.; Agnello, L.; Vernillo, G.; Castagna, C.; Merati, G. Effects of Ball Drills and Repeated-Sprint-Ability Training in Basketball Players. Int. J. Sports Physiol. Perform. 2019, 14, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, J.; Abrantes, C.; Leite, N. Power, heart rate and perceived exertion responses to 3X3 and 4X4 basketball small-sided games. Rev. Psicol. Deporte 2009, 18, 463–467. [Google Scholar]
- Vaquera, A.; Suárez-Iglesias, D.; Guiu, X.; Barroso, R.; Thomas, G.; Renfree, A. Physiological Responses to and Athlete and Coach Perceptions of Exertion During Small-Sided Basketball Games. J. Strength Cond. Res. 2018, 32, 2949–2953. [Google Scholar] [CrossRef]
- Atl, H.; Köklü, Y.; Alemdaroğlu, U.; Koçak, F. Ünver A Comparison of Heart Rate Response and Frequencies of Technical Actions Between Half-Court and Full-Court 3-A-Side Games in High School Female Basketball Players. J. Strength Cond. Res. 2013, 27, 352–356. [Google Scholar] [CrossRef]
- Klusemann, M.J.; Pyne, D.B.; Foster, C.; Drinkwater, E. Optimising technical skills and physical loading in small-sided bas-ketball games. J. Sports Sci. 2012, 30, 1463–1471. [Google Scholar] [CrossRef]
- McCormick, B.T.; Hannon, J.C.; Newton, M.; Shultz, B.B.; Miller, N.; Young, W. Comparison of Physical Activity in Small-Sided Basketball Games versus Full-Sided Games. Int. J. Sports Sci. Coach. 2012, 7, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; Impellizzeri, F.M.; Chaouachi, A.; Ben Abdelkrim, N.; Manzi, V. Physiological responses to ball-drills in regional level male basketball players. J. Sports Sci. 2011, 29, 1329–1336. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Detraining: Loss of Training-Induced Physiological and Performance Adaptations. Part I. Sports Med. 2000, 30, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.; E Turner, J.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar] [PubMed]
- Santos, E.J.; Janeira, M.A. The effects of polyometric training followed by detraining and reduced training periods on explosive strength in adolescent male basketball players. J. Strength Cond. Res. 2011, 25, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Zacharakis, E.D.; Bourdas, D.I.; Kotsifa, M.I.; Bekris, E.M.; Velentza, E.T.; Kostopoulos, N.I. Effect of balance and propriocep-tive training on balancing and technical skills in 13–14-year-old youth basketball players. J. Phys. Educ. Sport. 2020, 20, 2487–2500. [Google Scholar]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef]
- Anderson, J. Basketball Agility Drills: Agility Drill #1—Super Shuttle, Agility Drill #3—Shuttle with Passes. 2017. Available online: https://www.jenreviews.com/basketball-agility-drills/ (accessed on 27 June 2020).
- Behm, D.G.; Blazevich, A.J.; Kay, A.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bourdas, D.I.; Zacharakis, E.D. Physical activity: A natural ally to prevent impending adverse effects due to the increase of isolation and physical inactivity in COVID-19 era. Sports Med. 2020, 1, 25–34. [Google Scholar]
- Bourdas, D.I.; Zacharakis, E.D. Physical activity: COVID-19 enemy. Arch. Clin. Med. Case Rep. 2021, 5, 84–90. [Google Scholar] [CrossRef]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81–82, 209–230. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Cox, A.J.; Hopkins, W.G.; Minahan, C.L.; Hunt, P.H. Muscle damage, inflammation, and re-covery interventions during a 3-day basketball tournament. Eur. J. Sport. Sci. 2008, 8, 241–250. [Google Scholar] [CrossRef]
- Souglis, A.; Bogdanis, G.C.; Chryssanthopoulos, C.; Apostolidis, N.; Geladas, N.D. Time Course of Oxidative Stress, Inflammation, and Muscle Damage Markers for 5 Days After a Soccer Match: Effects of Sex and Playing Position. J. Strength Cond. Res. 2018, 32, 2045–2054. [Google Scholar] [CrossRef]
- Mohr, M.; Draganidis, D.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Castagna, C.; Douroudos, I.; Avloniti, A.; Margeli, A.; Papassotiriou, I.; Flouris, A.D.; et al. Muscle damage, inflammatory, immune and per-formance responses to three football games in 1 week in competitive male players. Eur. J. Appl. Physiol. 2016, 116, 179–193. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Nosaka, K.; Nunes, J.; Viveiros, L.; Jamurtas, A.; Aoki, M.S. Changes in Muscle Damage Markers in Female Basketball Players. Biol. Sport 2013, 31, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballmann, C.; Hotchkiss, H.; Marshall, M.; Rogers, R. The Effect of Wearing a Lower Body Compression Garment on Anaerobic Exercise Performance in Division I NCAA Basketball Players. Sports 2019, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, R.; Lam, W.-K.; Scanlan, A.T.; Beaven, C.M.; Driller, M. Lower-body compression garments worn following exercise improves perceived recovery but not subsequent performance in basketball athletes. J. Sports Sci. 2020, 38, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Ali, A.; Sheridan, S.; Chan, D.K.; Wong, S.H. Wearing Compression Garment Enhances Central Hemodynamics? A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Fox, J.L.; Stanton, R.; Scanlan, A.T.; Teramoto, M.; Sargent, C. The Association Between Sleep and In-Game Performance in Basketball Players. Int. J. Sports Physiol. Perform. 2021, 16, 333–341. [Google Scholar] [CrossRef]
- Conte, D.; Kamarauskas, P.; Ferioli, D.; Scanlan, A.T.; Kamandulis, S.; Paulauskas, H.; Lukonaitienė, I. Workload and well-being across games played on consecutive days during in-season phase in basketball players. J. Sports Med. Phys. Fitness 2021, 61, 534–541. [Google Scholar] [CrossRef]
- Doeven, S.H.; Brink, M.S.; Huijgen, B.C.H.; de Jong, J.; Lemmink, K.A.P.M. Managing Load to Optimize Well-Being and Re-covery During Short-Term Match Congestion in Elite Basketball. Int. J. Sports Physiol. Perform. 2020, 16, 45–50. [Google Scholar] [CrossRef]
- Fox, J.L.; Scanlan, A.T.; Stanton, R.; O’Grady, C.J.; Sargent, C. Losing Sleep Over It: Sleep in Basketball Players Affected by Game but Not Training Workloads. Int. J. Sports Physiol. Perform. 2020, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Kory, P.; Varon, J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med. Drug Discov. 2020, 6, 100041. [Google Scholar] [CrossRef] [PubMed]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef]
- Costagliola, G.; Spada, E.; Comberiati, P.; Peroni, D.G. Could nutritional supplements act as therapeutic adjuvants in COVID-19? Ital. J. Pediatr. 2021, 47, 1–5. [Google Scholar] [CrossRef]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Benahmed, A.G.; Bjørklund, G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin. Immunol. 2020, 220, 108545. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021, 143, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schinke, R.; Papaioannou, A.; Henriksen, K.; Si, G.; Zhang, L.; Haberl, P. Sport psychology services to high performance athletes during COVID-19. Int. J. Sport Exerc. Psychol. 2020, 18, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Di Fronso, S.; Costa, S.; Montesano, C.; Di Gruttola, F.; Ciofi, E.G.; Morgilli, L.; Robazza, C.; Bertollo, M. The effects of COVID-19 pandemic on perceived stress and psychobiosocial states in Italian athletes. Int. J. Sport Exerc. Psychol. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Andrade, A.; Bevilacqua, G.; Casagrande, P.; Brandt, R.; Coimbra, D. Sleep quality associated with mood in elite athletes. Phys. Sportsmed. 2018, 47, 312–317. [Google Scholar] [CrossRef]
- Schinke, R.J.; Stambulova, N.B.; Si, G.; Moore, Z. International society of sport psychology position stand: Athletes’ mental health, performance, and development. Int. J. Sport Exerc. Psychol. 2018, 16, 622–639. [Google Scholar] [CrossRef]
- Cormier, M.L.; Zizzi, S.J. Athletic Trainers’ Skills in Identifying and Managing Athletes Experiencing Psychological Distress. J. Athl. Train. 2015, 50, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Souter, G.; Lewis, R.; Serrant, L. Men, Mental Health and Elite Sport: A Narrative Review. Sports Med. Open 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Muir, I.L.; Munroe-Chandler, K.J. Using Infographics to Promote Athletes’ Mental Health: Recommendations for Sport Psychology Consultants. J. Sport Psychol. Action 2020, 11, 143–164. [Google Scholar] [CrossRef]
- Costa, S.; Santi, G.; Di Fronso, S.; Montesano, C.; Di Gruttola, F.; Ciofi, E.G.; Morgilli, L.; Bertollo, M. Athletes and adversities: Athletic identity and emotional regulation in time of COVID-19. Sport Sci. Health 2020, 16, 609–618. [Google Scholar] [CrossRef]
- Moore, E.W.G.; Gearity, B.T. Guest Editorial for Psychology of Strength and Conditioning Special Issue. Strength Cond. J. 2019, 41, 1–2. [Google Scholar] [CrossRef]
- Birrer, D.; Morgan, G. Psychological skills training as a way to enhance an athlete’s performance in high-intensity sports. Scand. J. Med. Sci. Sports 2010, 20, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ballesta, A.S.; Abruñedo, J.; Caparrós, T. Acelerometría en baloncesto. Estudio de la carga externa durante los entrenamientos. Apunts Educ. Física Deportes 2019, 135, 100–117. [Google Scholar] [CrossRef]
Test Order | Test Description | Tests | Physiological Variable Tested |
---|---|---|---|
1 | Anthropometric measures | BMI or SKF measurements, flexibility | Body composition, flexibility |
2 | Change of single (or multiple) direction(s) | T-test, lane agility | Speed, agility |
3 | Muscle strength, maximum muscular power, and non-exhausting power tests | One-repetition maximum squat and bench press, isokinetic dynamometry, CMJ, one-step jump | Maximum strength, power |
4 | Explosiveness measures | 5 m, 10 m, and ¾ court sprints | Speed/acceleration |
5 | Muscle fitness | Push-up, sit-up | Muscular endurance |
6 | All out anaerobic fitness | Wingate, suicide runs, shuttle runs | Anaerobic power |
7 | Cardiovascular/endurance | VO2max, Yo-Yo IR2, Yo-Yo IE2 | Aerobic capacity |
Aerobic Training | HR *, (Mean bpm (Range)) | HRmax *, (Mean % (Range)) | Running Speed, (Mean km/h (Range)) | RPE †, (Mean (Range)) |
---|---|---|---|---|
Low intensity | 130 (100–160) | 65 (50–80) | 11 (9–13) | 2 (1–3) |
Moderate intensity | 160 (140–180) | 80 (70–90) | 14 (12–16) | 4 (3–5) |
High intensity | 180 (170–200) | 90 (85–100) | 17 (15–19) | 6 (5–7) |
General Recommendations for Basketball Return | |
---|---|
i | Apply appropriate anti-COVID-19 precautions according to national public health guidelines. |
ii | Evaluate players’ physical conditions. |
iii | Design training microcycles/schedules beforehand and take into account the lockdown or detraining duration and the time until the onset of the next gaming schedule in conjunction with players’ physical condition. |
iv | Integrate moderate to high intensity aerobic exercise in combination with basic strength training, tailored to specific basketball requirements and also depending on the bio-physiological profile and position of each individual. |
v | Integrate basketball training drills and small-side games to meet the multifactorial physiological demands of the sport. |
vi | Integrate agility drills on the basketball court. |
vii | Gradually increase the training volume and intensity. |
viii | Avoid unnecessary exhaustive strength training or abrupt increase of non-basketball-specific training and/or workload. |
ix | Introduce sufficient stretching sessions post-training or post-game combined with compression garments. |
x | Adopt mental strategies for mental preparation, building resilience and mental health. |
xi | Promote adequate rest, sleep, proper hydration, and a balanced diet rich in micronutrients, carbohydrates, and vitamin D. |
xii | Monitor as possible players’ RPE, DOMS, and biochemical markers of muscle damage and accordingly modify your training if there is a need. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourdas, D.I.; Zacharakis, E.D.; Travlos, A.K.; Souglis, A. Return to Basketball Play Following COVID-19 Lockdown. Sports 2021, 9, 81. https://doi.org/10.3390/sports9060081
Bourdas DI, Zacharakis ED, Travlos AK, Souglis A. Return to Basketball Play Following COVID-19 Lockdown. Sports. 2021; 9(6):81. https://doi.org/10.3390/sports9060081
Chicago/Turabian StyleBourdas, Dimitrios I., Emmanouil D. Zacharakis, Antonios K. Travlos, and Athanasios Souglis. 2021. "Return to Basketball Play Following COVID-19 Lockdown" Sports 9, no. 6: 81. https://doi.org/10.3390/sports9060081
APA StyleBourdas, D. I., Zacharakis, E. D., Travlos, A. K., & Souglis, A. (2021). Return to Basketball Play Following COVID-19 Lockdown. Sports, 9(6), 81. https://doi.org/10.3390/sports9060081