Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Methodology
2.3.1. Anthropometry
2.3.2. Vertical Jump Height
2.3.3. Single-Leg Jumping Agility Test
2.3.4. Sprint Test
2.3.5. Sport-Specific Skill
2.3.6. Strength and Power Training
2.4. Statistical Analyses
3. Results
Performance Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S. Integrating models of long-term athletic development to maximize the physical development of youth. Int. J. Sports Sci. Coach. 2018, 13, 1189–1199. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 9, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.A.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, Part 2: Barriers to success and potential solutions. J. Strength Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.A.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, Part 1: A pathway for all youth. J. Strength Cond. Res. 2015, 29, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; pp. 15–33. [Google Scholar]
- Beunen, G.; Thomis, M. Muscular strength development in children and adolescents. Pediatr. Exerc. Sci. 2000, 12, 174–197. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sports Med. 2010, 44, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Papaiakovou, G.; Giannakos, A.; Michailidis, C.; Patikas, D.; Bassa, E.; Kalopisis, V.; Anthrakidis, N.; Kotzamanidis, C. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J. Strength Cond. Res. 2009, 23, 2568–2573. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. New insights into the development of maximal sprint speed in male youth. Strength Cond. J. 2017, 39, 2–10. [Google Scholar] [CrossRef]
- Granacher, U.; Goesele, A.; Roggo, K.; Wischer, T.; Fischer, S.; Zuerny, C.; Gollhofer, A.; Kriemler, S. Effects and mechanisms of strength training in children. Int. J. Sports Med. 2011, 32, 357–364. [Google Scholar] [CrossRef]
- Moran, J.J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.M.P.; Collison, J.A.; Parry, D.A. Age-related variation in male youth athletes’ countermovement jump after plyometric training: A meta-analysis of controlled trials. J. Strength Cond. Res. 2017, 31, 552–565. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Arazi, H.; Ramirez-Campillo, R.; Moran, J.; Izquierdo, M. Influence of Maturation Stage on Agility Performance Gains after Plyometric Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Moran, J.; Clark, C.C.T.; Ramirez-Campillo, R.; Davies, M.J.; Drury, B. A Meta-Analysis of Plyometric Training in Female Youth. J. Strength Cond. Res. 2019, 33, 1996–2008. [Google Scholar] [CrossRef]
- Sands, W.A.; McNeal, J.R.A. Minimalist Approach to Conditioning for Women’s Gymnastics. In USA Gymnastics Congress Proceedings Book; USA Gymnastics: Indianapolis, IN, USA, 1997; pp. 78–80. [Google Scholar]
- Donti, O.; Panidis, I.; Terzis, G.; Bogdanis, G.C. Gastrocnemius Medialis Architectural Properties at Rest and During Stretching in Female Athletes with Different Flexibility Training Background. Sports 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Panidi, I.; Bogdanis, G.C.; Gaspari, V.; Spiliopoulou, P.; Donti, A.; Terzis, G.; Donti, O. Gastrocnemius Medialis Architectural Properties in Flexibility Trained and Not Trained Child Female Athletes: A Pilot Study. Sports 2020, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Donti, O.; Donti, A.; Theodorakou, K. A review on the changes of the evaluation system affecting artistic gymnasts’ basic preparation: The aspect of choreography preparation. Sci. Gymnast. J. 2014, 2, 63–73. [Google Scholar]
- Douda, H.T.; Toubekis, A.G.; Avloniti, A.A.; Tokmakidis, S.P. Physiological and anthropometric determinants of rhythmic gymnastics performance. Int. J. Sports Physiol. Perform. 2008, 3, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995, 482, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, S.; Read, P.; Oliver, J.; Lloyd, R. Individual Responses to an 8-Week Neuromuscular Training Intervention in Trained Pre-Pubescent Female Artistic Gymnasts. Sports 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salagas, A.; Donti, O.; Katsikas, C.; Bogdanis, G.C. Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts. Sports. 2020, 8, 68. [Google Scholar] [CrossRef]
- Marina, M.; Jemni, M. Plyometric training performance in elite oriented prepubertal female gymnasts. J. Strength Cond. Res. 2014, 28, 1015–1025. [Google Scholar] [CrossRef]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Lloyd, R.S. The Physiological Demands of Youth Artistic Gymnastics. Strength Cond. J. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Hägglund, M.; Atroshi, I.; Wagner, P.; Waldén, M. Superior compliance with a neuromuscular training programme is associated with fewer ACL injuries and fewer acute knee injuries in female adolescent football players: Secondary analysis of an RCT. Br. J. Sports Med. 2013, 47, 974–979. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sports Health 2017, 9, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-García, J.M.; Rodríguez-Rosell, D.; Mora-Custodio, R.; González-Badillo, J.J. Changes in Muscle Strength, Jump, and Sprint Performance in Young Elite Basketball Players: The Impact of Combined High-Speed Resistance Training and Plyometrics. J. Strength Cond. Res. 2019. Available online: https://pubmed.ncbi.nlm.nih.gov/31895288/ (accessed on 27 December 2019). [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? PLoS ONE 2018, 13, e0205525. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sport. Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, E.; Docherty, C.L.; Schrader, J.; Klossner, J. The ability of 4 single-limb hopping tests to detect functional performance deficits in individuals with functional ankle instability. J. Orthop. Sports Phys. Ther. 2009, 39, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Naour, T.; Ré, C.; Bresciani, J.P. 3D feedback and observation for motor learning: Application to the roundoff movement in gymnastics. Hum. Mov. Sci. 2019, 66, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Georgopoulos, N.A.; Markou, K.B.; Theodoropoulou, A.; Vagenakis, G.A.; Benardot, D.; Leglise, M.; Dimopoulos, J.C.A.; Vagenakis, A.G. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J. Clin. Endocrinol. Metab. 2001, 86, 5159–5164. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Donti, O.; Papia, A.; Donti, A.; Apostolidis, N.; Sands, W.A. Effect of Plyometric Training on Jumping, Sprinting and Change of Direction Speed in Child Female Athletes. Sports 2019, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Bishop, D.C.; Gee, T.I. Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts. PLoS ONE 2016, 11, e0148790. [Google Scholar] [CrossRef] [Green Version]
- Sands, W.A.; Shultz, B.B.; Newman, A.P. Women’s gymnastics injuries: A 5-year study. Am. J. Sports Med. 1993, 21, 271–276. [Google Scholar] [CrossRef]
- McAuliffe, S.; Tabuena, A.; McCreesh, K.; O’Keeffe, M.; Hurley, J.; Comyns, T.; Purtill, H.; O’Neill, S.; O’Sullivan, K. Altered strength profile in Achilles tendinopathy: A systematic review and meta-analysis. J. Athl. Train. 2019, 54, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, H.; Beattie, C.S.; Schwartz, J.B.; Busconi, B.D. Assessing the Effectiveness of Neuromuscular Training Programs in Reducing the Incidence of Anterior Cruciate Ligament Injuries in Female Athletes: A Systematic Review. Am. J. Sports Med. 2015, 43, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.J.; Hume, P.A. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women’s artistic gymnastics. Sports Biomech. 2012, 11, 324–341. [Google Scholar] [CrossRef] [PubMed]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabène, H.; Tabka, Z. Kinematic and kinetic analysis of two gymnastics acrobatic series to performing the backward stretched somersault. J. Hum. Kinet. 2013, 37, 17–26. [Google Scholar] [CrossRef]
- Nagahara, R.; Takai, Y.; Haramura, M.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys. Pediat. Exerc. Sci. 2018, 30, 335–344. [Google Scholar] [CrossRef]
Characteristics | TG (n = 12) | CG (n = 11) | p |
---|---|---|---|
Age (year) | 13.2 ± 1.3 | 12.3 ± 1.3 | 0.106 |
Training experience (year) | 4.4 ± 2.7 | 4.3 ± 2.1 | 0.883 |
Height (cm) | 157.3 ± 6.1 | 156.0 ± 7.3 | 0.638 |
Body mass (kg) | 52.4 ± 6.6 | 51.6 ± 8.5 | 0.792 |
BMI (kg/m2) | 21.1 ± 1.6 | 21.2 ± 3.0 | 0.956 |
Maturity offset | 1.1 ± 0.9 | 0.6 ± 0.9 | 0.159 |
MONDAY | WEDNESDAY | FRIDAY | |
---|---|---|---|
WEEK 1 | 2 × 6 exercises (5 S + 1 P) | 2 × 6 exercises (5 S + 1 P) | 2 × 6 exercises (5 S + 1 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 2 | 2 × 6 exercises (2 S + 4 P) | 2 × 6 exercises (4 S + 2 P) | |
W:R = 15:15 | W:R = 15:15 | ||
total duration: 7 min | total duration: 7 min | ||
WEEK 3 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (3 S + 3 P) | 2 × 6 exercises (1 S + 5 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 4 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (4 S + 2 P) | 2 × 6 exercises (4 S + 2 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 5 | 2 × 6 exercises (6 P) | 2 × 6 exercises (1 S + 5 P) | |
W:R = 15:15 | W:R = 15:15 | ||
total duration: 7 min | total duration: 7 min | ||
WEEK 6 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (2 S + 4 P) | 2 × 6 exercises (1 S + 5 P) |
W:R = 20:20 | W:R = 20:20 | W:R = 20:20 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 7 | 2 × 4 exercises (2 S + 2 P) | 2 × 4 exercises (1 S + 3 P) | 2 × 4 exercises (2 S + 2 P) |
W:R = 30:30 | W:R = 30:30 | W:R = 30:30 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 8 | 2 × 4 exercises (2 S + 2 P) | 2 × 4 exercises (4 S) | |
W:R = 30:30 | W:R = 30:30 | ||
total duration: 9 min | total duration: 9 min | ||
WEEK 9 | 2 × 4 exercises (4 S) | 2 × 4 exercises (1 S + 3 P) | 2 × 4 exercises (4 S) |
W:R = 30:30 | W:R = 30:30 | W:R = 30:30 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 10 | 2 × 4 exercises (4 S) | 2 × 4 exercises (4 P) | |
W:R = 30:30 | W:R = 30:30 | ||
total duration: 9 min | total duration: 9 min |
Measured Parameter | Group | Pre-Training | Post-Training | p (Interaction) | Cohen’s d (Pre vs. Post) | Δ Values (Pre vs. Post) | Cohens’ d of Δ Values Between Groups |
---|---|---|---|---|---|---|---|
10 m Sprint (s) | TG | 2.05 ± 0.10 | 2.09 ± 0.11 | 0.709 | 0.44 | 0.04 ± 0.13 | 0.17 |
CG | 2.14 ± 0.07 | 2.17 ± 0.09 | 0.35 | 0.03 ± 0.08 | |||
Round-Off (s) | TG | 23.17 ± 2.56 | 20.97 ± 0.91 | 0.004 | 1.20 | 2.21 ± 2.00 | 1.47 |
CG | 23.09 ± 1.97 | 23.81 ± 1.86 | 0.40 | 0.72 ± 2.18 | |||
CMJ (cm) | TG | 24.00 ± 3.34 | 26.03 ± 4.68 | 0.52 | 2.0 ± 2.27 | 1.47 | |
CG | 22.95 ± 3.66 | 21.82 ± 3.66 | 0.004 | 0.32 | 1.12 ± 2.22 | ||
R + L CMJ (cm) | TG | 24.99 ± 3.64 | 27.81 ± 4.40 | 0.73 | 2.82 ± 2.49 | 1.54 | |
CG | 22.79 ± 3.31 | 22.20 ± 3.11 | 0.002 | 0.20 | 0.6 ± 2.10 | ||
DJ (cm) | TG | 22.12 ± 2.55 | 25.33 ± 4.15 | 0.98 | 3.21 ± 2.77 | 1.01 | |
CG | 19.93 ± 3.98 | 20.30 ± 2.00 | 0.038 | 0.12 | 0.37 ± 3.10 | ||
Single-leg Jumping Agility (s) | TG | 17.91 ± 1.48 | 15.43 ± 0.86 | 2.15 | 2.48 ± 1.03 | 1.70 | |
CG | 18.62 ± 1.30 | 18.09 ± 1.38 | 0.001 | 0.42 | 0.53 ± 1.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagianni, K.; Donti, O.; Katsikas, C.; Bogdanis, G.C. Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports 2020, 8, 104. https://doi.org/10.3390/sports8080104
Karagianni K, Donti O, Katsikas C, Bogdanis GC. Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports. 2020; 8(8):104. https://doi.org/10.3390/sports8080104
Chicago/Turabian StyleKaragianni, Konstantina, Olyvia Donti, Christos Katsikas, and Gregory C. Bogdanis. 2020. "Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes" Sports 8, no. 8: 104. https://doi.org/10.3390/sports8080104
APA StyleKaragianni, K., Donti, O., Katsikas, C., & Bogdanis, G. C. (2020). Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports, 8(8), 104. https://doi.org/10.3390/sports8080104