Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Methodology
2.3.1. Anthropometry
2.3.2. Vertical Jump Height
2.3.3. Single-Leg Jumping Agility Test
2.3.4. Sprint Test
2.3.5. Sport-Specific Skill
2.3.6. Strength and Power Training
2.4. Statistical Analyses
3. Results
Performance Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S. Integrating models of long-term athletic development to maximize the physical development of youth. Int. J. Sports Sci. Coach. 2018, 13, 1189–1199. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 9, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.A.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, Part 2: Barriers to success and potential solutions. J. Strength Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.A.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, Part 1: A pathway for all youth. J. Strength Cond. Res. 2015, 29, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; pp. 15–33. [Google Scholar]
- Beunen, G.; Thomis, M. Muscular strength development in children and adolescents. Pediatr. Exerc. Sci. 2000, 12, 174–197. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sports Med. 2010, 44, 56–63. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Papaiakovou, G.; Giannakos, A.; Michailidis, C.; Patikas, D.; Bassa, E.; Kalopisis, V.; Anthrakidis, N.; Kotzamanidis, C. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J. Strength Cond. Res. 2009, 23, 2568–2573. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. New insights into the development of maximal sprint speed in male youth. Strength Cond. J. 2017, 39, 2–10. [Google Scholar] [CrossRef]
- Granacher, U.; Goesele, A.; Roggo, K.; Wischer, T.; Fischer, S.; Zuerny, C.; Gollhofer, A.; Kriemler, S. Effects and mechanisms of strength training in children. Int. J. Sports Med. 2011, 32, 357–364. [Google Scholar] [CrossRef]
- Moran, J.J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.M.P.; Collison, J.A.; Parry, D.A. Age-related variation in male youth athletes’ countermovement jump after plyometric training: A meta-analysis of controlled trials. J. Strength Cond. Res. 2017, 31, 552–565. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Arazi, H.; Ramirez-Campillo, R.; Moran, J.; Izquierdo, M. Influence of Maturation Stage on Agility Performance Gains after Plyometric Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Moran, J.; Clark, C.C.T.; Ramirez-Campillo, R.; Davies, M.J.; Drury, B. A Meta-Analysis of Plyometric Training in Female Youth. J. Strength Cond. Res. 2019, 33, 1996–2008. [Google Scholar] [CrossRef]
- Sands, W.A.; McNeal, J.R.A. Minimalist Approach to Conditioning for Women’s Gymnastics. In USA Gymnastics Congress Proceedings Book; USA Gymnastics: Indianapolis, IN, USA, 1997; pp. 78–80. [Google Scholar]
- Donti, O.; Panidis, I.; Terzis, G.; Bogdanis, G.C. Gastrocnemius Medialis Architectural Properties at Rest and During Stretching in Female Athletes with Different Flexibility Training Background. Sports 2019, 7, 39. [Google Scholar] [CrossRef]
- Panidi, I.; Bogdanis, G.C.; Gaspari, V.; Spiliopoulou, P.; Donti, A.; Terzis, G.; Donti, O. Gastrocnemius Medialis Architectural Properties in Flexibility Trained and Not Trained Child Female Athletes: A Pilot Study. Sports 2020, 8, 29. [Google Scholar] [CrossRef]
- Donti, O.; Donti, A.; Theodorakou, K. A review on the changes of the evaluation system affecting artistic gymnasts’ basic preparation: The aspect of choreography preparation. Sci. Gymnast. J. 2014, 2, 63–73. [Google Scholar]
- Douda, H.T.; Toubekis, A.G.; Avloniti, A.A.; Tokmakidis, S.P. Physiological and anthropometric determinants of rhythmic gymnastics performance. Int. J. Sports Physiol. Perform. 2008, 3, 41–54. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995, 482, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, S.; Read, P.; Oliver, J.; Lloyd, R. Individual Responses to an 8-Week Neuromuscular Training Intervention in Trained Pre-Pubescent Female Artistic Gymnasts. Sports 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Salagas, A.; Donti, O.; Katsikas, C.; Bogdanis, G.C. Heart Rate Responses during Sport-Specific High-Intensity Circuit Exercise in Child Female Gymnasts. Sports. 2020, 8, 68. [Google Scholar] [CrossRef]
- Marina, M.; Jemni, M. Plyometric training performance in elite oriented prepubertal female gymnasts. J. Strength Cond. Res. 2014, 28, 1015–1025. [Google Scholar] [CrossRef]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Lloyd, R.S. The Physiological Demands of Youth Artistic Gymnastics. Strength Cond. J. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Hägglund, M.; Atroshi, I.; Wagner, P.; Waldén, M. Superior compliance with a neuromuscular training programme is associated with fewer ACL injuries and fewer acute knee injuries in female adolescent football players: Secondary analysis of an RCT. Br. J. Sports Med. 2013, 47, 974–979. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sports Health 2017, 9, 436–443. [Google Scholar] [CrossRef]
- Yáñez-García, J.M.; Rodríguez-Rosell, D.; Mora-Custodio, R.; González-Badillo, J.J. Changes in Muscle Strength, Jump, and Sprint Performance in Young Elite Basketball Players: The Impact of Combined High-Speed Resistance Training and Plyometrics. J. Strength Cond. Res. 2019. Available online: https://pubmed.ncbi.nlm.nih.gov/31895288/ (accessed on 27 December 2019). [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? PLoS ONE 2018, 13, e0205525. [Google Scholar] [CrossRef]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sport. Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, E.; Docherty, C.L.; Schrader, J.; Klossner, J. The ability of 4 single-limb hopping tests to detect functional performance deficits in individuals with functional ankle instability. J. Orthop. Sports Phys. Ther. 2009, 39, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Le Naour, T.; Ré, C.; Bresciani, J.P. 3D feedback and observation for motor learning: Application to the roundoff movement in gymnastics. Hum. Mov. Sci. 2019, 66, 564–577. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Georgopoulos, N.A.; Markou, K.B.; Theodoropoulou, A.; Vagenakis, G.A.; Benardot, D.; Leglise, M.; Dimopoulos, J.C.A.; Vagenakis, A.G. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J. Clin. Endocrinol. Metab. 2001, 86, 5159–5164. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Donti, O.; Papia, A.; Donti, A.; Apostolidis, N.; Sands, W.A. Effect of Plyometric Training on Jumping, Sprinting and Change of Direction Speed in Child Female Athletes. Sports 2019, 7, 116. [Google Scholar] [CrossRef]
- Hall, E.; Bishop, D.C.; Gee, T.I. Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts. PLoS ONE 2016, 11, e0148790. [Google Scholar] [CrossRef]
- Sands, W.A.; Shultz, B.B.; Newman, A.P. Women’s gymnastics injuries: A 5-year study. Am. J. Sports Med. 1993, 21, 271–276. [Google Scholar] [CrossRef]
- McAuliffe, S.; Tabuena, A.; McCreesh, K.; O’Keeffe, M.; Hurley, J.; Comyns, T.; Purtill, H.; O’Neill, S.; O’Sullivan, K. Altered strength profile in Achilles tendinopathy: A systematic review and meta-analysis. J. Athl. Train. 2019, 54, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, H.; Beattie, C.S.; Schwartz, J.B.; Busconi, B.D. Assessing the Effectiveness of Neuromuscular Training Programs in Reducing the Incidence of Anterior Cruciate Ligament Injuries in Female Athletes: A Systematic Review. Am. J. Sports Med. 2015, 43, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.J.; Hume, P.A. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women’s artistic gymnastics. Sports Biomech. 2012, 11, 324–341. [Google Scholar] [CrossRef] [PubMed]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabène, H.; Tabka, Z. Kinematic and kinetic analysis of two gymnastics acrobatic series to performing the backward stretched somersault. J. Hum. Kinet. 2013, 37, 17–26. [Google Scholar] [CrossRef][Green Version]
- Nagahara, R.; Takai, Y.; Haramura, M.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys. Pediat. Exerc. Sci. 2018, 30, 335–344. [Google Scholar] [CrossRef]
Characteristics | TG (n = 12) | CG (n = 11) | p |
---|---|---|---|
Age (year) | 13.2 ± 1.3 | 12.3 ± 1.3 | 0.106 |
Training experience (year) | 4.4 ± 2.7 | 4.3 ± 2.1 | 0.883 |
Height (cm) | 157.3 ± 6.1 | 156.0 ± 7.3 | 0.638 |
Body mass (kg) | 52.4 ± 6.6 | 51.6 ± 8.5 | 0.792 |
BMI (kg/m2) | 21.1 ± 1.6 | 21.2 ± 3.0 | 0.956 |
Maturity offset | 1.1 ± 0.9 | 0.6 ± 0.9 | 0.159 |
MONDAY | WEDNESDAY | FRIDAY | |
---|---|---|---|
WEEK 1 | 2 × 6 exercises (5 S + 1 P) | 2 × 6 exercises (5 S + 1 P) | 2 × 6 exercises (5 S + 1 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 2 | 2 × 6 exercises (2 S + 4 P) | 2 × 6 exercises (4 S + 2 P) | |
W:R = 15:15 | W:R = 15:15 | ||
total duration: 7 min | total duration: 7 min | ||
WEEK 3 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (3 S + 3 P) | 2 × 6 exercises (1 S + 5 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 4 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (4 S + 2 P) | 2 × 6 exercises (4 S + 2 P) |
W:R = 15:15 | W:R = 15:15 | W:R = 15:15 | |
total duration: 7 min | total duration: 7 min | total duration: 7 min | |
WEEK 5 | 2 × 6 exercises (6 P) | 2 × 6 exercises (1 S + 5 P) | |
W:R = 15:15 | W:R = 15:15 | ||
total duration: 7 min | total duration: 7 min | ||
WEEK 6 | 2 × 6 exercises (1 S + 5 P) | 2 × 6 exercises (2 S + 4 P) | 2 × 6 exercises (1 S + 5 P) |
W:R = 20:20 | W:R = 20:20 | W:R = 20:20 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 7 | 2 × 4 exercises (2 S + 2 P) | 2 × 4 exercises (1 S + 3 P) | 2 × 4 exercises (2 S + 2 P) |
W:R = 30:30 | W:R = 30:30 | W:R = 30:30 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 8 | 2 × 4 exercises (2 S + 2 P) | 2 × 4 exercises (4 S) | |
W:R = 30:30 | W:R = 30:30 | ||
total duration: 9 min | total duration: 9 min | ||
WEEK 9 | 2 × 4 exercises (4 S) | 2 × 4 exercises (1 S + 3 P) | 2 × 4 exercises (4 S) |
W:R = 30:30 | W:R = 30:30 | W:R = 30:30 | |
total duration: 9 min | total duration: 9 min | total duration: 9 min | |
WEEK 10 | 2 × 4 exercises (4 S) | 2 × 4 exercises (4 P) | |
W:R = 30:30 | W:R = 30:30 | ||
total duration: 9 min | total duration: 9 min |
Measured Parameter | Group | Pre-Training | Post-Training | p (Interaction) | Cohen’s d (Pre vs. Post) | Δ Values (Pre vs. Post) | Cohens’ d of Δ Values Between Groups |
---|---|---|---|---|---|---|---|
10 m Sprint (s) | TG | 2.05 ± 0.10 | 2.09 ± 0.11 | 0.709 | 0.44 | 0.04 ± 0.13 | 0.17 |
CG | 2.14 ± 0.07 | 2.17 ± 0.09 | 0.35 | 0.03 ± 0.08 | |||
Round-Off (s) | TG | 23.17 ± 2.56 | 20.97 ± 0.91 | 0.004 | 1.20 | 2.21 ± 2.00 | 1.47 |
CG | 23.09 ± 1.97 | 23.81 ± 1.86 | 0.40 | 0.72 ± 2.18 | |||
CMJ (cm) | TG | 24.00 ± 3.34 | 26.03 ± 4.68 | 0.52 | 2.0 ± 2.27 | 1.47 | |
CG | 22.95 ± 3.66 | 21.82 ± 3.66 | 0.004 | 0.32 | 1.12 ± 2.22 | ||
R + L CMJ (cm) | TG | 24.99 ± 3.64 | 27.81 ± 4.40 | 0.73 | 2.82 ± 2.49 | 1.54 | |
CG | 22.79 ± 3.31 | 22.20 ± 3.11 | 0.002 | 0.20 | 0.6 ± 2.10 | ||
DJ (cm) | TG | 22.12 ± 2.55 | 25.33 ± 4.15 | 0.98 | 3.21 ± 2.77 | 1.01 | |
CG | 19.93 ± 3.98 | 20.30 ± 2.00 | 0.038 | 0.12 | 0.37 ± 3.10 | ||
Single-leg Jumping Agility (s) | TG | 17.91 ± 1.48 | 15.43 ± 0.86 | 2.15 | 2.48 ± 1.03 | 1.70 | |
CG | 18.62 ± 1.30 | 18.09 ± 1.38 | 0.001 | 0.42 | 0.53 ± 1.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagianni, K.; Donti, O.; Katsikas, C.; Bogdanis, G.C. Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports 2020, 8, 104. https://doi.org/10.3390/sports8080104
Karagianni K, Donti O, Katsikas C, Bogdanis GC. Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports. 2020; 8(8):104. https://doi.org/10.3390/sports8080104
Chicago/Turabian StyleKaragianni, Konstantina, Olyvia Donti, Christos Katsikas, and Gregory C. Bogdanis. 2020. "Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes" Sports 8, no. 8: 104. https://doi.org/10.3390/sports8080104
APA StyleKaragianni, K., Donti, O., Katsikas, C., & Bogdanis, G. C. (2020). Effects of Supplementary Strength–Power Training on Neuromuscular Performance in Young Female Athletes. Sports, 8(8), 104. https://doi.org/10.3390/sports8080104