Beyond Jump Height: A Comparison of Concentric Variables in the Squat Jump, Countermovement Jump and Drop Jump for Athletic Profiling
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Vertical Jump Testing
2.4. Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison Between Jumps
4.2. Shared Variance
4.3. Rankings
4.4. Concentric Force Index
4.5. Practical Applications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CC | Contractile Component |
| CFI | Concentric Force Index |
| CMF | Concentric Mean Force |
| CMJ | Countermovement Jump |
| ConT | Concentric Duration |
| DJ | Drop Jump |
| GCT | Ground Contact Time |
| JH | Jump Height |
| MTU | Muscle-Tendon Unit |
| PEC | Parallel Elastic Component |
| rCMF | Relative Concentric Mean Force |
| RSI | Reactive Strength Index |
| RSImod | Reactive Strength Index Modified |
| SEC | Series Elastic Component |
| SJ | Squat Jump |
| SSC | Stretch-Shortening Cycle |
| TCM | Three-Component Model |
| TCT | Total Contraction Time |
| vGRF | Vertical Ground Reaction Force |
References
- Cavagna, G.A.; Dusman, B.; Margaria, R. Positive Work Done by a Previously Stretched Muscle. J. Appl. Physiol. 1968, 24, 21–32. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J. Why Is Countermovement Jump Height Greater than Squat Jump Height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Doyle, T.L.; Newton, M.; Edwards, D.J.; Nimphius, S.; Newton, R.U. Eccentric Utilization Ratio: Effect of Sport and Phase of Training. J. Strength Cond. Res. 2006, 20, 992–995. [Google Scholar] [CrossRef]
- Komi, P.V.; Bosco, C. Utilization of Stored Elastic Energy in Leg Extensor Muscles by Men and Women. Med. Sci. Sports Exerc. 1978, 10, 261–265. [Google Scholar]
- Hill, A.V. The Heat of Shortening and the Dynamic Constants of Muscle. Proc. R. Soc. Lond. B Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Hill, A.V. The Abrupt Transition from Rest to Activity in Muscle. Proc. R. Soc. Lond. B Biol. Sci. 1949, 136, 399–420. [Google Scholar]
- Hill, A.V. Production and Absorption of Work by Muscle. Science 1960, 131, 897–903. [Google Scholar] [CrossRef]
- Ishikawa, M.; Komi, P.V. Effects of Different Dropping Intensities on Fascicle and Tendinous Tissue Behavior during Stretch-Shortening Cycle Exercise. J. Appl. Physiol. 2004, 96, 848–852. [Google Scholar] [CrossRef]
- Csapo, R.; Gumpenberger, M.; Wessner, B. Skeletal Muscle Extracellular Matrix—What Do We Know about Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front. Physiol. 2020, 11, 253. [Google Scholar]
- Ward, S.R.; Winters, T.M.; O’Connor, S.M.; Lieber, R.L. Non-Linear Scaling of Passive Mechanical Properties in Fibers, Bundles, Fascicles and Whole Rabbit Muscles. Front. Physiol. 2020, 11, 253. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Prilutsky, B.I. Biomechanics of Skeletal Muscles; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Ishikawa, M.; Finni, T.; Komi, P.V. Behaviour of Vastus Lateralis Muscle-Tendon during High Intensity SSC Exercises in Vivo. Acta Physiol. Scand. 2003, 178, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Kopper, B.; Csende, Z.; Sáfár, S.; Hortobágyi, T.; Tihanyi, J. Muscle Activation History at Different Vertical Jumps and Its Influence on Vertical Velocity. J. Electromyogr. Kinesiol. 2013, 23, 132–139. [Google Scholar] [CrossRef]
- Kopper, B.; Csende, Z.; Trzaskoma, L.; Tihanyi, J. Stretch-Shortening Cycle Characteristics during Vertical Jumps Carried Out with Small and Large Range of Motion. J. Electromyogr. Kinesiol. 2014, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Thys, H.; Cavagna, G.A.; Margaria, R. The Role Played by Elasticity in an Exercise Involving Movements of Small Amplitude. Pflüg. Archiv. 1975, 354, 281–286. [Google Scholar] [CrossRef]
- Farris, D.J.; Lichtwark, G.A.; Brown, N.A.T.; Cresswell, A.G. The Role of Human Ankle Plantar Flexor Muscle-Tendon Interaction and Architecture in Maximal Vertical Jumping Examined in Vivo. J. Exp. Biol. 2016, 219, 528–539. [Google Scholar]
- Finni, T.; Ikegawa, S.; Lepola, V.; Komi, P.V. In Vivo Behavior of Vastus Lateralis Muscle during Dynamic Performances. Eur. J. Sport Sci. 2001, 1, 1–13. [Google Scholar] [CrossRef]
- Fukashiro, S.; Kurokawa, S.; Fukunaga, T.; Funato, K. Comparison of Muscle-Tendon Interaction of Human M. Gastrocnemius between Ankle- and Drop-Jumping. Int. J. Sport Health Sci. 2005, 3, 253–263. [Google Scholar] [CrossRef]
- Fukashiro, S.; Hay, D.C.; Nagano, A. Biomechanical Behavior of Muscle-Tendon Complex during Dynamic Human Movements. J. Appl. Biomech. 2006, 22, 131–147. [Google Scholar] [CrossRef]
- Ishikawa, M.; Niemela, E.; Komi, P.V. Interaction between Fascicle and Tendinous Tissues in Short-Contact Stretch-Shortening Cycle Exercise with Varying Eccentric Intensities. J. Appl. Physiol. 2005, 99, 217–223. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Elastic Properties of Muscle-Tendon Complex in Long-Distance Runners. Eur. J. Appl. Physiol. 2000, 81, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, S.; Fukunaga, T.; Fukashiro, S. Behavior of Fascicles and Tendinous Structures of Human Gastrocnemius during Vertical Jumping. J. Appl. Physiol. 2001, 90, 2011–2022. [Google Scholar] [CrossRef]
- Kurokawa, S.; Fukunaga, T.; Nagano, A.; Fukashiro, S. Interaction between Fascicles and Tendinous Structures during Counter Movement Jumping Investigated in Vivo. J. Appl. Physiol. 2003, 95, 2306–2314. [Google Scholar] [CrossRef]
- Nikolaidou, M.E.; Marzilger, R.; Bohm, S.; Mersmann, F.; Arampatzis, A. Operating Length and Velocity of Human M. Vastus Lateralis Fascicles during Vertical Jumping. R. Soc. Open Sci. 2017, 4, 170185. [Google Scholar] [CrossRef]
- Sousa, F.; Ishikawa, M.; Vilas-Boas, J.P.; Komi, P.V. Intensity- and Muscle-Specific Fascicle Behavior during Human Drop Jumps. J. Appl. Physiol. 2007, 102, 382–389. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Jordan, M.; Harry, J.; Loturco, I.; Lake, J.; Comfort, P. A Framework to Guide Practitioners for Selecting Metrics during the Countermovement and Drop Jump Tests. Strength Cond. J. 2022, 44, 95–103. [Google Scholar]
- Bishop, C.; Jordan, M.; Torres-Ronda, L.; Loturco, I.; Harry, J.; Virgile, A.; Mundy, P.; Turner, A.; Comfort, P. Selecting Metrics That Matter: Comparing the Use of the Countermovement Jump for Performance Profiling, Neuromuscular Fatigue Monitoring, and Injury Rehabilitation Testing. Strength Cond. J. 2023, 45, 545–553. [Google Scholar] [CrossRef]
- Comfort, P.; Jones, P.A.; McMahon, J.J. (Eds.) Performance Assessment in Strength and Conditioning; Routledge: London, UK, 2018. [Google Scholar]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-Time, Force-Time, and Velocity-Time Curve Analysis during the Jump Squat: Impact of Load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative Countermovement-Jump Analysis to Quantify Acute Neuromuscular Fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Rej, S.J.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Snyder, B.W.; Connaboy, C.; Lamont, H.S.; Davis, S.E. Using Drop Jumps and Jump Squats to Assess Eccentric and Concentric Force-Velocity Characteristics. Sports 2018, 6, 125. [Google Scholar] [CrossRef]
- Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the Magnitude and Direction of Asymmetry during the Squat, Countermovement and Drop Jump Tests in Elite Youth Female Soccer Players. J. Sports Sci. 2020, 38, 1296–1303. [Google Scholar]
- Makaracı, Y.; Özer, Ö.; Soslu, R.; Uysal, A. Bilateral Counter Movement Jump, Squat, and Drop Jump Performances in Deaf and Normal-Hearing Volleyball Players: A Comparative Study. J. Exerc. Rehabil. 2021, 17, 339–347. [Google Scholar]
- Wilson, G.J.; Elliott, B.C.; Wood, G.A. The Effect on Performance of Imposing a Delay during a Stretch-Shortening Cycle Movement. Med. Sci. Sports Exerc. 1991, 23, 364–370. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Storage and Utilization of Elastic Strain Energy during Jumping. J. Biomech. 1993, 26, 1413–1427. [Google Scholar] [CrossRef]
- Coh, M.; Mackala, K. Differences between the Elite and Sub-Elite Sprinters in Kinematic and Dynamic Determinations of Countermovement Jump and Drop Jump. J. Strength Cond. Res. 2013, 27, 3021–3027. [Google Scholar] [PubMed]
- Van Hooren, B.; Zolotarjova, J. The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef]
- Schmidtbleicher, D. Training for Power Events. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell Scientific Publications: Oxford, UK, 1992; pp. 381–395. [Google Scholar]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. An Estimation of Power Output and Work Done by the Human Triceps Surae Muscle-Tendon Complex in Jumping. J. Biomech. 1986, 19, 899–906. [Google Scholar]
- Flanagan, E.P.; Harrison, A.J. Muscle Dynamics Differences between Legs in Healthy Adults. J. Strength Cond. Res. 2007, 21, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying Reliable and Relatable Force-Time Metrics in Athletes-Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports 2021, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Rentz, L.E.; Hornsby, W.G.; Wagle, J.P.; Stone, J.D.; Smith, H.T.; Galster, S.M.; Joseph, M.; Hagen, J.A. Comparisons of Countermovement Jump Force-Time Characteristics among National Collegiate Athletic Association Division I American Football Athletes: Use of Principal Component Analysis. J. Strength Cond. Res. 2022, 36, 411–419. [Google Scholar] [CrossRef]
- Meylan, C.M.P.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and Kinetic Analysis of Unilateral Jumping in the Vertical, Horizontal, and Lateral Directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of Methods That Assess Lower-Body Stretch-Shortening Cycle Utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar]
- Asmussen, E.; Bonde-Petersen, F. Storage of Elastic Energy in Skeletal Muscles in Man. Acta Physiol. Scand. 1974, 91, 385–392. [Google Scholar] [CrossRef]
- Young, W.B.; Pryor, J.F.; Wilson, G.J. Effect of Instructions on Characteristics of Countermovement and Drop Jump Performance. J. Strength Cond. Res. 1995, 9, 232–236. [Google Scholar] [PubMed]
- Makaracı, Y.; Nas, K.; Ruiz-Cárdenas, J.D.; Gündüz, K.; Aydemir, M.; Orange, S.T. Test-Retest Reliability and Convergent Validity of Piezoelectric Force Plate Measures of Single-Leg Sit-to-Stand Performance in Trained Adults. J. Strength Cond. Res. 2023, 37, 2373–2380. [Google Scholar]
- Earp, J.E.; Kraemer, W.J.; Newton, R.U.; Comstock, B.A.; Fragala, M.S.; Dunn-Lewis, C.; Solomon-Hill, G.; Penwell, Z.R.; Powell, M.D.; Volek, J.S.; et al. Lower-Body Muscle Structure and Its Role in Jump Performance during Squat, Countermovement, and Depth Drop Jumps. J. Strength Cond. Res. 2010, 24, 722–729. [Google Scholar] [CrossRef]
- Janicijevic, D.N.; Knezevic, O.M.; Mirkov, D.M.; Pérez-Castilla, A.; Petrovic, M.R.; García-Ramos, A. Magnitude and Reliability of Mechanical Outputs Obtained During Loaded Squat Jumps Performed from Different Knee Angles. Sports Biomech. 2019, 20, 925–937. [Google Scholar] [CrossRef]
- Turner, A.N.; Jeffreys, I. The Stretch-Shortening Cycle: Proposed Mechanisms and Methods for Enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Bosco, C.; Komi, P.V.; Ito, A. Prestretch Potentiation of Human Skeletal Muscle during Ballistic Movement. Acta Physiol. Scand. 1981, 111, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Earp, J.E.; Kraemer, W.J.; Cormie, P.; Volek, J.S.; Maresh, C.M.; Joseph, M.; Newton, R.U. Influence of Muscle-Tendon Unit Structure on Rate of Force Development during the Squat, Countermovement, and Drop Jumps. J. Strength Cond. Res. 2011, 25, 340–347. [Google Scholar] [PubMed]
- McBride, J.M.; McCaulley, G.O.; Cormie, P. Influence of Preactivity and Eccentric Muscle Activity on Concentric Performance during Vertical Jumping. J. Strength Cond. Res. 2008, 22, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding Change of Direction Ability in Sport: A Review of Resistance Training Studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; DeKlerk, M. Single-Leg Lateral, Horizontal, and Vertical Jump Assessment: Reliability, Interrelationships, and Ability to Predict Sprint and Change-of-Direction Performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Ryan, C.; Uthoff, A.; McKenzie, C.; Cronin, J. Sub-Phase Analysis of the Modified 5-0-5 Test for Better Change of Direction Diagnostics. J. Sports Exerc. Sci. 2022, 6, 16–21. [Google Scholar]
- Pleša, J.; Kozinc, Z.; Šarabon, N. A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization. Appl. Mech. 2022, 3, 144–159. [Google Scholar] [CrossRef]
- Ham, D.J.; Knez, W.L.; Young, W.B. A Deterministic Model of the Vertical Jump: Implications for Training. J. Strength Cond. Res. 2007, 21, 967–972. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Drake, D. The Effect of Acute Fatigue on Countermovement Jump Performance in Rugby Union Players during Preseason. J. Sports Med. Phys. Fit. 2017, 57, 1261–1266. [Google Scholar] [CrossRef]
- Walsh, M.; Arampatzis, A.; Schade, F.; Brüggemann, G.P. The Effect of Drop Jump Starting Height and Contact Time on Power, Work Performed, and Moment of Force. J. Strength Cond. Res. 2004, 18, 561–566. [Google Scholar]
- Ebben, W.P.; Petushek, E.J. Using the Reactive Strength Index Modified to Evaluate Plyometric Performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Byrne, P.J.; Moody, J.A.; Cooper, S.M.; Kinsella, S. Interday Reliability of the Reactive Strength Index and Optimal Drop Height during Depth Jumps in Active Males. J. Strength Cond. Res. 2017, 31, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the Reactive Strength Index and Time to Stabilization during Depth Jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Markwick, W.J.; Bird, S.P.; Tufano, J.J.; Seitz, L.B.; Haff, G.G. The Intraday Reliability of the Reactive Strength Index Calculated from a Drop Jump in Professional Men’s Basketball. Int. J. Sports Physiol. Perform. 2015, 10, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Reactive Strength Index: A Poor Indicator of Reactive Strength? Int. J. Sports Physiol. Perform. 2018, 13, 802–809. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]




| Variable | SJ | CMJ | DJ |
|---|---|---|---|
| JH (cm) | 34.6 ± 4.4 b | 37.8 ± 4.1 ac | 31.9 ± 5.0 b |
| ConT (ms) | 409 ± 48 bc | 273 ± 24 ac | 124 ± 15 ab |
| CMF (N) | 1263 ± 161 bc | 1547 ± 202 ac | 2339 ± 262 ab |
| rCMF (N/kg) | 16.2 ± 0.8 bc | 19.8 ± 1.0 ac | 30.1 ± 2.7 ab |
| CFI | 4.0 ± 0.7 bc | 7.4 ± 1.0 ac | 24.9 ± 5.3 ab |
| Jump Height | Concentric Duration | Concentric Mean Force | Relative Concentric Mean Force | Concentric Force Index | |
|---|---|---|---|---|---|
| SJ-CMJ | 0.691 ‡ | 0.26 | 0.901 ‡ | 0.305 | 0.303 |
| SJ-DJ | 0.098 | −0.181 | 0.65 ‡ | 0.019 | −0.168 |
| CMJ-DJ | −0.47 | −0.452 † | 0.542 † | −0.223 | −0.393 |
| Concentric Duration | Concentric Mean Force | Relative Concentric Mean Force | Concentric Force Index | |
|---|---|---|---|---|
| SJ | 0.281 | −0.041 | 0.264 | −0.103 |
| CMJ | 0.198 | 0.095 | 0.359 | 0.002 |
| DJ | 0.327 | 0.212 | 0.308 | −0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyne, H.; Cronin, J.B. Beyond Jump Height: A Comparison of Concentric Variables in the Squat Jump, Countermovement Jump and Drop Jump for Athletic Profiling. Sports 2025, 13, 379. https://doi.org/10.3390/sports13110379
Kyne H, Cronin JB. Beyond Jump Height: A Comparison of Concentric Variables in the Squat Jump, Countermovement Jump and Drop Jump for Athletic Profiling. Sports. 2025; 13(11):379. https://doi.org/10.3390/sports13110379
Chicago/Turabian StyleKyne, Hamish, and John B. Cronin. 2025. "Beyond Jump Height: A Comparison of Concentric Variables in the Squat Jump, Countermovement Jump and Drop Jump for Athletic Profiling" Sports 13, no. 11: 379. https://doi.org/10.3390/sports13110379
APA StyleKyne, H., & Cronin, J. B. (2025). Beyond Jump Height: A Comparison of Concentric Variables in the Squat Jump, Countermovement Jump and Drop Jump for Athletic Profiling. Sports, 13(11), 379. https://doi.org/10.3390/sports13110379

