Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Concussions (Independent Variable)
2.4. Neurocognitive Functions (Dependent Variables)
2.4.1. Composite Memory
2.4.2. Verbal Memory Test
2.4.3. Visual Memory Test
2.4.4. Finger Tapping Test
2.4.5. Symbol Digit Coding Test
2.4.6. Stroop Test
2.4.7. Shifting Attention Test
2.4.8. Continuous Performance Test
2.5. Procedures
2.6. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Neurocognitive Functions
3.3. Number of Concussions
3.4. Association between Concussion and Neurocognitive Function
4. Discussion
4.1. Neurocognitive Function
4.2. Association between Concussion and Neurocognitive Function
4.3. Clinical Implications
4.4. Research Implications
4.5. Study Limitations
4.6. Study Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins Dictionary. “Neurocognitive” Definition. Available online: https://www.collinsdictionary.com/dictionary/english/neurocognitive#google_vignette (accessed on 9 March 2023).
- Casanova, F.; Oliveira, J.; Williams, M.; Garganta, J. Expertise and perceptual-cognitive performance in soccer: A review. Rev. Port. Ciências Desporto 2009, 9, 115–122. [Google Scholar] [CrossRef]
- Soylu, Y.; Arslan, E.; Kilit, B. Psychophysiological Responses and Cognitive Performance: A Systematic Review of Mental Fatigue on Soccer Performance. Int. J. Sport Stud. Health 2021, 4, e124244. [Google Scholar] [CrossRef]
- Avedesian, J.M.; Forbes, W.; Covassin, T.; Dufek, J.S. Influence of Cognitive Performance on Musculoskeletal Injury Risk: A Systematic Review. Am. J. Sports Med. 2022, 50, 554–562. [Google Scholar] [CrossRef]
- Maher, M.E.; Hutchison, M.; Cusimano, M.; Comper, P.; Schweizer, T.A. Concussions and heading in soccer: A review of the evidence of incidence, mechanisms, biomarkers and neurocognitive outcomes. Brain Inj. 2014, 28, 271–285. [Google Scholar] [CrossRef]
- Grijalva, C.; Hale, D.; Wu, L.; Toosizadeh, N.; Laksari, K. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Front. Hum. Neurosci. 2023, 17, 1191284. [Google Scholar] [CrossRef]
- Koerte, I.K.; Mayinger, M.; Muehlmann, M.; Kaufmann, D.; Lin, A.P.; Steffinger, D.; Fisch, B.; Rauchmann, B.S.; Immler, S.; Karch, S.; et al. Cortical thinning in former professional soccer players. Brain Imaging Behav. 2016, 10, 792–798. [Google Scholar] [CrossRef]
- Guskiewicz, K.M.; Marshall, S.W.; Broglio, S.P.; Cantu, R.C.; Kirkendall, D.T. No Evidence of Impaired Neurocognitive Performance in Collegiate Soccer Players. Am. J. Sports Med. 2002, 30, 157–162. [Google Scholar] [CrossRef]
- Meyers, C.A. Neurocognitive dysfunction in cancer patients. Oncology 2000, 14, 75–79; discussion 9, 81–82, 85. [Google Scholar]
- Spudich, S. HIV and Neurocognitive Dysfunction. Curr. HIV/AIDS Rep. 2013, 10, 235–243. [Google Scholar] [CrossRef]
- Utset, T.O.; Fink, J.; Doninger, N.A. Prevalence of neurocognitive dysfunction and other clinical manifestations in disabled patients with systemic lupus erythematosus. J. Rheumatol. 2006, 33, 531–538. [Google Scholar]
- Prien, A.; Junge, A.; Brugger, P.; Straumann, D.; Feddermann-Demont, N. Neurocognitive Performance of 425 Top-Level Football Players: Sport-specific Norm Values and Implications. Arch. Clin. Neuropsychol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Gouttebarge, V.; Aoki, H.; Kerkhoffs, G. Knee osteoarthritis in professional football is related to severe knee injury and knee surgery. Inj. Epidemiol. 2018, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.; Ting, H.; Cheah, J.-H.; Ramayah, T.; Chuah, F.; Cham, T.-H. Sample Size for Survey Research: Review and Recommendations. J. Appl. Struct. Equ. Model. 2020, 4, i–xx. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef] [PubMed]
- CNS Vital Signs®. CNS Vital Signs Manual. 2017. Available online: https://www.cnsvs.com/WhitePapers/CNSVS-BriefInterpretationGuide.pdf (accessed on 15 August 2021).
- Hume, P.A.; Theadom, A.; Lewis, G.N.; Quarrie, K.L.; Brown, S.R.; Hill, R.; Marshall, S.W. A Comparison of Cognitive Function in Former Rugby Union Players Compared with Former Non-Contact-Sport Players and the Impact of Concussion History. Sports Med. 2017, 47, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Bennett, L.L.; Bernick, C.; Shan, G.; Banks, S.J. The Relations Among Depression, Cognition, and Brain Volume in Professional Boxers: A Preliminary Examination Using Brief Clinical Measures. J. Head. Trauma. Rehabil. 2019, 34, E29–E39. [Google Scholar] [CrossRef]
- Rogers, S.D.; Smith, P.J.; Stephenson, A.J.; Erik Everhart, D. A Retrospective Cross-Sectional and Longitudinal Study of the Effects of Age on CNS Vital Signs Scores in High-School Athletes. Sports Med. 2017, 47, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery CNS Vital Signs. Arch. Clin. Neuropsych. 2006, 21, 623–643. [Google Scholar] [CrossRef]
- Littleton, A.C.; Register-Mihalik, J.K.; Guskiewicz, K.M. Test-Retest Reliability of a Computerized Concussion Test: CNS Vital Signs. Sports Health 2015, 7, 443–447. [Google Scholar] [CrossRef]
- Iverson, G.L.; Brooks, B.L.; Langenecker, S.A.; Young, A.H. Identifying a cognitive impairment subgroup in adults with mood disorders. J. Affect. Disord. 2011, 132, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Meskal, I.; Gehring, K.; van der Linden, S.D.; Rutten, G.J.M.; Sitskoorn, M.M. Cognitive improvement in meningioma patients after surgery: Clinical relevance of computerized testing. J. Neurooncol. 2015, 121, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hays, R.D.; Bjorner, J.B.; Revicki, D.A.; Spritzer, K.L.; Cella, D. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual. Life Res. 2009, 18, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Von Campenhausen, S.; Bornschein, B.; Wick, R.; Bötzel, K.; Sampaio, C.; Poewe, W.; Oertel, W.; Siebert, U.; Berger, K.; Dodel, R. Prevalence and incidence of Parkinson’s disease in Europe. Eur. Neuropsychopharmacol. 2005, 15, 473–490. [Google Scholar] [CrossRef] [PubMed]
- OECD/European Union. Dementia Prevalence. In Health at a Glance: Europe 2018: State of Health in the EU Cycle; OECD Publishing: Paris, France; European Union: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; et al. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; Lasmar, R.P.; Caramelli, P. Effects of Soccer Heading on Brain Structure and Function. Front. Neurol. 2016, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J.; Self, M.; ReFaey, K.; Elsayed, G.; Chagoya, G.; Bernstock, J.D.; Johnston, J.M. Concussion in soccer: A comprehensive review of the literature. Concussion 2020, 5, CNC76. [Google Scholar] [CrossRef] [PubMed]
- Broglio, S.P.; Ferrara, M.S.; Piland, S.G.; Anderson, R.B. Concussion history is not a predictor of computerised neurocognitive performance. Br. J. Sports Med. 2006, 40, 802–805. [Google Scholar] [CrossRef]
- Howell, D.; Osternig, L.; Van Donkelaar, P.; Mayr, U.; Chou, L.-S. Effects of concussion on attention and executive function in adolescents. Med. Sci. Sports Exerc. 2013, 45, 1030–1037. [Google Scholar] [CrossRef]
- Cunningham, J.; Broglio, S.P.; O’Grady, M.; Wilson, F. History of Sport-Related Concussion and Long-Term Clinical Cognitive Health Outcomes in Retired Athletes: A Systematic Review. J. Athl. Train. 2020, 55, 132–158. [Google Scholar] [CrossRef]
- McDonald, A.A.; Wilkerson, G.B.; McDermott, B.P.; Bonacci, J.A. Risk factors for initial and subsequent core or lower extremity sprain or strain among collegiate football players. J. Athl. Train. 2019, 54, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Bahdur, K.; Pruna, R.; Erasmus, H.; Pedret, C. Does cognition play a role in injury prevention and return to play in the elite football player? A perspective from the field. Apunt. Med. L’esport 2018, 53, 125–128. [Google Scholar] [CrossRef]
- Ivarsson, A.; Johnson, U.; Andersen, M.B.; Fallby, J.; Altemyr, M. It pays to pay attention: A mindfulness-based program for injury prevention with soccer players. J. Appl. Sport. Psychol. 2015, 27, 319–334. [Google Scholar] [CrossRef]
- Moreira, L.; Malloy-Diniz, L.F.; Pinheiro, G.S.; Costa, V.T. Are there differences in the attention of elite football players concerning playing positions? Sci. Med. Footb. 2022, 6, 494–502. [Google Scholar] [CrossRef] [PubMed]
Demographics | Age (Mean and SD) | 26.5 | 1.7 |
Football | Seasons played (Mean and SD) | 7.6 | 2.6 |
characteristics | Playing position (n and %) | ||
Goalkeeper | 23 | 22.8 | |
Defender | 42 | 41.6 | |
Midfielder | 25 | 24.8 | |
Forward | 11 | 10.9 | |
Career Level (n and %) | |||
Highest national level | 57 | 56.4 | |
Second highest national level | 32 | 31.7 | |
Other levels | 12 | 11.9 | |
PROMIS-GH | Physical Health T-score | 52.9 | 6.4 |
T-scores (Mean and SD) | Mental Health T-score | 53.2 | 7.4 |
Neurological | Diagnosed player | 0 | 0 |
Disease (n and %) | Diagnosed family member | 22 | 21.8 |
Dementia | 6 | 5.9 | |
Parkinson’s | 10 | 9.9 | |
Alzheimer’s | 6 | 5.9 |
Valid % | Unlikely % | Slight % | Moderate % | Likely % | SS Mean (SD) | |
---|---|---|---|---|---|---|
NCI | 77.2 | 77.2 | 6.9 | 3.0 | 13.9 | 86.47 (31.07) |
CM | 90.1 | 67.3 | 14.9 | 7.9 | 9.9 | 93.64 (20.39) |
PM Spd | 85.1 | 75.2 | 10.9 | 4.0 | 9.9 | 95.40 (28.40) |
RT | 86.1 | 59.4 | 21.8 | 9.9 | 9.9 | 90.00 (17.53) |
CA | 81.2 | 79.2 | 8.9 | 2.0 | 9.9 | 81.38 (81.91) |
CF | 86.1 | 72.3 | 12.9 | 7.9 | 6.9 | 92.52 (20.70) |
PS | 86.1 | 54.5 | 20.8 | 9.9 | 14.9 | 84.78 (23.20) |
EF | 89.1 | 71.3 | 13.9 | 8.9 | 6.9 | 93.92 (18.41) |
SA | 84.2 | 80.2 | 7.9 | 3.0 | 8.9 | 96.98 (18.09) |
MS | 89.1 | 89.1 | 5.9 | 1.0 | 4.0 | 107.46 (21.23) |
Concussions | |||||
---|---|---|---|---|---|
0 | Any | 1 | 2 | >3 | |
OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |
NCI | 0.6 (0.2–0.4) | 1.8 (0.8–4.7) | 1.2 (0.4–3.3) | 2.4 (0.8–7.0) | 0.6 (0.1–2.7) |
CM | 1.0 (0.4–2.3) | 1.0 (0.4–2.3) | 1.0 (0.4–2.7) | 0.5 (0.1–1.5) | 2.3 (0.7–8.0) |
PM Spd | 1.8 (0.7–4.4) | 0.6 (0.2–1.4) | 0.8 (0.2–2.2) | 0.8 (0.2–2.4) | 0.6 (0.1–2.4) |
RT | 1.7 (0.8–3.9) | 0.6 (0.3–1.3) | 0.5 (0.2–1.4) | 1.8 (0.7–5.1) | 0.3 (0.0–1.0) |
CA | 0.3 (0.1–0.9) | 3.4 (1.1–10.1) | 1.4 (0.4–4.0) | 2.1 (0.6–6.2) | 2.1 (0.5–7.6) |
CF | 0.6 (0.2–1.4) | 1.8 (0.7–4.3) | 0.8 (0.3–2.3) | 1.7 (0.6–4.8) | 2.1 (0.6–7.1) |
PS | 1.0 (0.5–2.2) | 1.0 (0.5–2.2) | 1.3 (0.5–3.2) | 1.4 (0.5–3.9) | 0.4 (0.1–1.3) |
EF | 0.5 (0.2–1.3) | 1.9 (0.8–4.6) | 0.8 (0.3–2.1) | 2.1 (0.7–6.0) | 1.9 (0.5–6.7) |
SA | 0.3 (0.1–1.0) | 3.1 (1.0–9.3) | 2.0 (0.7–5.8) | 0.7 (0.2–2.5) | 3.5 (0.9–2.6) |
MS | 1.0 (0.3–3.5) | 1.0 (0.3–3.5) | 2.0 (0.5–7.3) | 0.4 (0.0–2.3) | 0.7 (0.0–4.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillay, L.; Janse van Rensburg, D.C.; den Hollander, S.; Ramkilawon, G.; Kerkhoffs, G.; Gouttebarge, V. Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion. Sports 2024, 12, 170. https://doi.org/10.3390/sports12060170
Pillay L, Janse van Rensburg DC, den Hollander S, Ramkilawon G, Kerkhoffs G, Gouttebarge V. Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion. Sports. 2024; 12(6):170. https://doi.org/10.3390/sports12060170
Chicago/Turabian StylePillay, Lervasen, Dina Christa Janse van Rensburg, Steve den Hollander, Gopika Ramkilawon, Gino Kerkhoffs, and Vincent Gouttebarge. 2024. "Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion" Sports 12, no. 6: 170. https://doi.org/10.3390/sports12060170
APA StylePillay, L., Janse van Rensburg, D. C., den Hollander, S., Ramkilawon, G., Kerkhoffs, G., & Gouttebarge, V. (2024). Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion. Sports, 12(6), 170. https://doi.org/10.3390/sports12060170