Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, Separation, and Pollen Identification
2.2. Isolation and Identification of Volatile Organic Compounds
2.2.1. Sample Preparation
2.2.2. Sample Extraction
2.2.3. GC Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. BVOCs: Plant defense against climate warming? Trends Plant Sci. 2003, 8, 105–109. [Google Scholar] [CrossRef]
- Peñuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef]
- Dobson, H.E.M. Floral Volatiles in Insect Biology. In Insect–Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; Volume V, pp. 47–81. [Google Scholar]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Dötterl, S.; Jürgens, A. Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Syst. Evol. 2005, 255, 99–199. [Google Scholar] [CrossRef]
- Mena, A.; Egea, F.J.; Guerra, J.M.; Martínez, J.L. Analysis of biogenic volatile organic compounds in Zucchini flowers: Identification of scent sources. J. Chem. Ecol. 2005, 31, 2309–2322. [Google Scholar] [CrossRef]
- Jullien, F.; Gao, J.; Orel, G.; Legendre, L. Analysis of tissue-specific emission of volatiles by the flowers of six Camellia species. Flavour Fragr. J. 2008, 23, 115–120. [Google Scholar] [CrossRef]
- Filella, I.; Bosch, J.; Llusià, J.; Peñuelas, A.; Peñuelas, J. Chemical cues involved in the attraction of the oligolectic bee Hoplitis adunca to its host plant Echium vulgare. Biochem. Syst. Ecol. 2011, 39, 498–508. [Google Scholar] [CrossRef]
- Dobson, H.E.M. Role of flower and pollen aromas in host-plant recognition by solitary honey bees. Oecologia 1987, 72, 618–623. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. Plant VOC emissions: Making use of the unavoidable. Trends Ecol. Evol. 2004, 19, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C. Regulation of terpenoid and benzenoid production in flowers. Curr. Opin. Plant Biol. 2006, 9, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Rasher, D.B.; Stout, E.P.; Engel, S.; Kubanek, J.; Hay, M.E. Macroalgal terpenes function as allelopathic agents against reef corals. Proc. Natl. Acad. Sci. USA 2011, 108, 17726–17731. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Negre, F.; Kish, C.M.; Boatright, J.; Underwood, B.; Shibuya, K.; Wagner, C.; Clark, D.G.; Dudareva, N. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 2003, 15, 2992–3006. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.; Parra, L.; Quiroz, A.; Isaacs, R. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: Implications for flower visitation by honey bees. Ann. Bot. 2011, 107, 1377–1390. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 56–67. [Google Scholar] [CrossRef]
- Dobson, H.E.M.; Groth, I.; Bergström, G. Pollen advertisement: Chemical contrasts between flower and pollen odors. Am. J. Bot. 1996, 83, 877–885. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I. Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis. J. Agric. Food Chem. 2002, 50, 4647–4652. [Google Scholar] [CrossRef] [PubMed]
- Doull, K.M. The relative attractiveness to pollen-collecting honey bees of some different pollens. J. Apic. Res. 1966, 5, 9–13. [Google Scholar] [CrossRef]
- Dobson, H.E.M.; Bergström, G. The ecology and evolution of pollen odors. Plant Syst. Evol. 2000, 222, 63–87. [Google Scholar] [CrossRef]
- Knoll, F. Über Pollenkitt und Bestäubungsart. Zeit Bot. 1930, 23, 609–675. [Google Scholar]
- Dobson, H.E.M.; Bergström, G.; Groth, I. Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb (Rosaceae). Isr. J. Bot. 1990, 39, 143–156. [Google Scholar]
- Dobson, H.E.M.; Danielson, E.M.; Wesep, I.D. Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol. 1999, 14, 153–166. [Google Scholar] [CrossRef]
- Bartlet, E.; Blight, M.M.; Lane, P.; Williams, I.H. The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol. Exp. Appl. 1997, 85, 257–262. [Google Scholar] [CrossRef]
- Cook, S.M.; Bartlet, E.; Murray, D.A.; Williams, I.H. The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol. Exp. Appl. 2002, 104, 43–50. [Google Scholar] [CrossRef]
- Golding, Y.C.; Sullivan, M.S.; Sutherland, J.P. Visits to manipulated flowers by Episyrphus balteatus (Diptera: Syrphidae): Partitioning the signals of petals and anthers. J. Insect Behav. 1999, 12, 39–45. [Google Scholar] [CrossRef]
- Lunau, K. Innate recognition of flowers by bumble bees: Orientation of antennae to visual stamen signals. Can. J. Zool. 1992, 70, 2139–2144. [Google Scholar] [CrossRef]
- Liolios, V.; Kanelis, D.; Rodopoulou, M.A.; Tananaki, C. A Comparative Study of Methods Recording Beekeeping Flora. Forests 2023, 14, 1677. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The application of pollen as a functional food and feed ingredient—The present and perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef]
- Sipos, L.; Végh, R.; Bodor, Z.; Zaukuu, J.L.Z.; Hitka, G.; Bázár, G.; Kovacs, Z. Classification of bee pollen and prediction of sensory and colorimetric attributes—A sensometric fusion approach by e-Nose, e-Tongue and NIR. Sensors 2020, 20, 6768. [Google Scholar] [CrossRef]
- Bergström, G.; Dobson, H.E.M.; Groth, I. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst. Evol. 1995, 195, 221–242. [Google Scholar] [CrossRef]
- Bi, Y.; Ni, J.; Xue, X.; Zhou, Z.; Tian, W.; Orsat, V.; Sha, Y.; Wenjun, P.; Fang, X. Effect of different drying methods on the amino acids, α-dicarbonyls and volatile compounds of rape bee pollen. Food Sci. Hum. Wellness 2024, 13, 517–527. [Google Scholar] [CrossRef]
- Csóka, M.; Végh, R.; Sipos, L. Volatile profile of bee pollens: Optimization of sampling conditions for aroma analysis, identification of potential floral markers, and establishment of the flavor wheel. Food Sci. Nutr. 2025, 13, e4707. [Google Scholar] [CrossRef]
- Collin, S.; Vanhavre, T.; Bodart, E.; Bouseta, A. Heat treatment of pollens: Impact on their volatile flavor constituents. J. Agric. Food Chem. 1995, 43, 444–448. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Ruočkuvienė, G.; Kaškonas, P.; Akuneca, I.; Maruška, A. Chemometric analysis of bee pollen based on volatile and phenolic compound compositions and antioxidant properties. Food Anal. Methods 2015, 8, 1150–1163. [Google Scholar] [CrossRef]
- Keskin, M.; Özkök, A. Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech J. Food Sci. 2020, 38, 203–208. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Karabournioti, S.; Badeka, A.V. Aroma identification of Greek bee pollen using HS-SPME/GC–MS. Eur. Food Res. Technol. 2021, 247, 1781–1789. [Google Scholar] [CrossRef]
- Prđun, S.; Svečnjak, L.; Valentić, M.; Marijanović, Z.; Jerković, I. Characterization of bee pollen: Physico-chemical properties, headspace composition and FTIR spectral profiles. Foods 2021, 10, 2103. [Google Scholar] [CrossRef]
- Starowicz, M. Analysis of volatiles in food products. Separations 2021, 8, 157. [Google Scholar] [CrossRef]
- Campos, M.G.; Bogdanov, S.; Almeida-Muradian, L.B.; Szczęsna, T.; Macebo, J.; Frigerio, C.; Ferreira, F. Pollen composition and standardization of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Dimou, M.; Tananaki, C.; Liolios, V.; Thrasyvoulou, A. Pollen foraging by honey bees (Apis mellifera L.) in Greece: Botanical and geographical origin. J. Apic. Sci. 2014, 58, 11–23. [Google Scholar] [CrossRef]
- Tananaki, C. The Study of Factors Affective the Volatile Compounds from Honeydew Honeys. PhD Thesis, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2006. [Google Scholar] [CrossRef]
- Bertoli, A.; Fambrini, M.; Doveri, S.; Leonardi, M.; Pugliesi, C.; Pistelli, L. Pollen aroma fingerprint of two sunflower (Helianthus annuus L.) genotypes characterized by different pollen colors. Chem. Biodivers. 2011, 8, 1766–1775. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gambacorta, G.; Alabiden Tlais, A.Z.; Cantatore, V.; Gobbetti, M. Volatilome and bioaccessible phenolics profiles in lab-scale fermented bee pollen. Food 2021, 10, 286. [Google Scholar] [CrossRef]
- Lima Neto, J.S.; Lopes, J.A.D.; Moita Neto, J.M.; Lima, S.G.; Luz, C.F.P.; Citó, A.M.G.L. Volatile compounds and palynological analysis from pollen pots of stingless bees from the Mid-North region of Brazil. Brazil. J. Pharm. Sci. 2017, 53, e14093. [Google Scholar] [CrossRef]
- Liolios, V.; Tananaki, C.; Dimou, M.; Kanelis, D.; Goras, G.; Karazafiris, E.; Thrasyvoulou, A. Ranking pollen from bee plants according to their protein contribution to honey honey bees. J. Apic. Res. 2015, 54, 582–592. [Google Scholar] [CrossRef]
- Liolios, V.; Tananaki, C.; Kanelis, D.; Rodopoulou, M.A.; Argena, N. Effect of geographical origin on lipid content and fatty acids composition of bee collected pollen. J. Apic. Res. 2024, 63, 103–111. [Google Scholar] [CrossRef]
- Robertson, L.D.; Cardona, C. Studies of bee activity and outcrossing in increase plots of Vicia faba L. Field Crops Res. 1986, 15, 157–164. [Google Scholar] [CrossRef]
- Eisikowich, D.; Lupo, A. Wild flowers as competitors for pollinators in almond orchards. Alon Hanotea 1989, 43, 1307–1312. [Google Scholar]
- Aufess, V.A. Geruchliche Nahorientierung der Biene bei entomophilen und ornithophilen Blüten. Z. Vgl. Physiol. 1960, 43, 469–498. [Google Scholar] [CrossRef]
- Gunawardena, N.E.; Bandarage, U.K. 4-Methyl-5-nonanol (Ferrugineol) as an aggregation pheromone of the coconut pest, Rhynchophorus Ferrugineus F. (Coleoptera: Curculionidae): Synthesis and use in a preliminary field assay. J. Natl. Sci. Counc. Sri Lanka 1995, 23, 71–79. [Google Scholar] [CrossRef]
- Ramirez-Lucas, P.; Malosse, C.; Ducrot, P.H.; Lettere, M.; Zagatti, P. Chemical identification, electrophysiological and behavioral activities of the pheromone of Metamasius hemipterus (Coleoptera: Curculionidae). Bioorganic Med. Chem. 1996, 4, 323–330. [Google Scholar] [CrossRef]
- Hohmman, H. Effect of pollen extracts and scented oils on the foraging and recruiting activities of the honey bees. Apidologie 1970, 1, 157–178. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A. Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee. Nature 1962, 194, 704–706. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A. Identification of nerolic and geranic acids in the Nassanoff pheromone of the honey bee. Nature 1964, 202, 320–321. [Google Scholar] [CrossRef]
- Weaver, N.; Weaver, E.C.; Law, J.H. The Attractiveness of Citral to Foraging Honeyhoney Bees. In Texas Agricultural Experiment Station, Reports in Progress; Texas A&M University: College Station, TX, USA, 1964; Volume 2324. [Google Scholar]
- Butler, C.G.; Calam, D.H. Pheromones of the honeybee—The secretion of the Nassanoff gland of the worker. J. Insect Physiol. 1969, 15, 237–244. [Google Scholar] [CrossRef]
- Saa-Otero, M.P.; Díaz-Losada, E.; Fernández-Gómez, E. Analysis of fatty acids, proteins and ethereal extract in honeybee pollen—Considerations of their floral origin. Grana 2000, 39, 175–181. [Google Scholar] [CrossRef]
- Blum, M.S. Pheromonal Sociality in the Hymenoptera. In Pheromones; Birch, M.C., Ed.; American Elsevier Publications: New York, NY, USA, 1974; pp. 222–249. [Google Scholar]
- Pandey, A.K.; Rai, M.K.; Acharya, D. Chemical composition and antimycotic activity of the essential oils of corn mint (Mentha arvensis) and lemon grass (Cymbopogon flexuosus) against human pathogenic fungi. Pharm. Biol. 2003, 41, 421–425. [Google Scholar] [CrossRef]
- Chebli, B.; Hmamouchi, M.; Achouri, M.; Hassani, L.M.I. Composition and in vitro fungitoxic activity of 19 essential oils against two post-harvest pathogens. J. Essent. Oil Res. 2004, 16, 507–511. [Google Scholar] [CrossRef]
- Alilou, H.; Akssirar, M.; Hassani, L.M.I.; Chebli, B.; El Hakmoui, A.; Mellouki, F.; Rouhi, R.; Boira, H.; Blázquez, M.A. Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathol. Mediterr. 2008, 47, 3–10. [Google Scholar]
- Amri, I.; Gargouri, S.; Hamrouni, L.; Hanana, M.; Fezzani, T.; Jamoussi, B. Chemical composition, phytotoxic and antifungal activities of Pinus pinea essential oil. J. Pest Sci. 2012, 85, 199–207. [Google Scholar] [CrossRef]
- Llusià, J.; Peñuelas, J. Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ. Exp. Bot. 1999, 42, 61–68. [Google Scholar] [CrossRef]
- Blanch, J.S.; Peñuelas, J.; Sardans, J.; Llusia, J. Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol. Plant. 2009, 31, 207–218. [Google Scholar] [CrossRef]
- Cole, R.A. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 1976, 15, 759–762. [Google Scholar] [CrossRef]
- VanEtten, C.H.; Tookey, H.L. Glucosinolates. In Naturally Occurring Food Toxicants; Rechcigl, M., Ed.; CRC Press: Boca Raton, FL, USA, 1983; pp. 15–30. [Google Scholar]
- Free, J.; Williams, I. The responses of the pollen beetle, Melighetes aeneus, and the seed weevil, Ceuthorynchus assimilis, to oil seed rape, Brassica napus, and other plants. J. Appl. Ecol. 1978, 15, 761–774. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. The myrosinase–glucosinolate system, its organisation and biochemistry. Physiol. Plant. 1996, 97, 194–208. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Boydston, R.A. Volatile allelochemicals released by crucifer green manures. J. Chem. Ecol. 1997, 23, 2107–2116. [Google Scholar] [CrossRef]
- Tollsten, L.; Bergström, G. Headspace volatiles of whole plants and macerated plant-parts of Brassica and Sinapis. Phytochemistry 1988, 27, 4013–4018. [Google Scholar] [CrossRef]
- Barker, A.M.; Molotsane, R.; Müller, C.; Schaffner, U.; Städler, E. Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates. Chemoecology 2006, 16, 209–218. [Google Scholar] [CrossRef]
- Renwick, J.A.A.; Haribal, M.; Gouinguené, S.; Städler, E. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol. 2006, 32, 755–766. [Google Scholar] [CrossRef]
α/α | Code | Volatile Compound | RT (min) |
---|---|---|---|
1 | C1 | Methyl propanoate (m/z 57, 88) | 2.61 |
2 | C2 | isomer of methylbutanal (m/z 58, 71, 86) | 2.78 |
3 | C3 | Benzene (m/z 51, 58, 78) | 2.95 |
4 | C4 | 1-Penten-3-ol (m/z 55, 57) | 3.09 |
5 | C5 | Heptane (m/z 57, 71, 100) | 3.30 |
6 | C6 | 4-Methylcyclohexanol (m/z 57, 81, 96) | 3.33 |
7 | C7 | 2-ethylfuran (m/z 53, 81, 96) | 3.37 |
8 | C8 | 2-Hexenal (m/z 55, 69, 83, 90) | 3.41 |
9 | C9 | Unknown (m/z 59, 71, 85) | 3.53 |
10 | C10 | Ethyl propionate (m/z 57, 75, 102) | 3.56 |
11 | C11 | 2-Ethyl-2-butenal (m/z 55, 69, 83, 98) | 3.97 |
12 | C12 | 1-Pentanol (m/z 55, 70) | 4.00 |
13 | C13 | Isothiocyanatomethane (m/z 78) | 4.21 |
14 | C14 | Dimethyl disulfide (m/z 61, 79, 94) | 4.23 |
15 | C15 | 3-Methyl-2-butenal (m/z 55, 83, 94) | 4.51 |
16 | C16 | 2-Methylpropanoic acid ethyl ester (m/z 71, 88, 116) | 4.61 |
17 | C17 | Methyl-benzene {Toleune} (m/z 51, 65, 91) | 4.75 |
18 | C18 | 2-Penten-1-ol (m/z 57, 68, 70, 91) | 4.83 |
19 | C19 | Butanoic acid, 2-methyl-, methyl ester (m/z 57, 88, 101) | 5.15 |
20 | C20 | 1-Hectene (m/z 55, 70, 83, 112) | 5.43 |
21 | C21 | Unknown (m/s 55, 67, 85, 97) | 5.44 |
22 | C22 | 3-Methyl-3-cyclohexen-1-ol (m/z 55, 60, 69, 84, 97) | 5.48 |
23 | C23 | Octane (m/z 57, 71, 85, 114) | 5.73 |
24 | C24 | Hexanal (m/z 56, 67, 71, 85) | 5.87 |
25 | C25 | 2-Octene (m/z 55, 70, 83, 112) | 6.07 |
26 | C26 | 3-Methyl-1,4-heptadiene (m/z 55, 68, 79, 81, 95, 110) | 6.29 |
27 | C27 | 3-Octene (m/z 55, 70, 81, 95, 112) | 6.39 |
28 | C28 | Furfural (m/z 67, 96) | 7.31 |
29 | C29 | 2-Methyl-pentan-1-ol (m/z 56, 69, 84) | 7.95 |
30 | C30 | Ethyl 2-methylbutyrate (m/z 57, 74, 85, 102, 115) | 8.25 |
31 | C31 | 2-Hexenal (m/z 55, 69, 83, 98) | 8.35 |
32 | C32 | Ethyl 3-methylbutyrate (m/z 55, 57, 69, 83, 85, 88) | 8.48 |
33 | C33 | 3-hexen-1-ol (m/z 67, 77, 82, 91, 106) | 8.57 |
34 | C34 | Ethylbenzene (m/z 67, 91, 106) | 8.69 |
35 | C35 | 5-cyano-1-pentene (m/z 55, 67, 80, 94) | 8.71 |
36 | C36 | 2-Furanmethanol (m/z 53, 69, 81, 98) | 8.71 |
37 | C37 | 1,2-Xylene (m/z 91, 106) | 9.12 |
38 | C38 | 2-Hexen-1-ol (m/z 57, 67, 82) | 9.23 |
39 | C39 | Isomer of allyl isothiocyanate (m/z 58, 72, 99) | 9.43 |
40 | C40 | 1-Hexanol (m/z 56, 69) | 9.44 |
41 | C41 | 3-Methyl-1-butanol acetate (m/z 55, 70, 87) | 9.86 |
42 | C42 | 2-Methyl-1-butanol acetate (m/z 55, 70) | 10.04 |
43 | C43 | 2-Cyclopentene-1,4-dione (m/z 54, 68, 96) | 10.21 |
44 | C44 | Isomer of allyl isothiocyanate (m/z 72, 99) | 10.23 |
45 | C45 | Styrene (m/z 51, 78, 104) | 10.47 |
46 | C46 | 1,4-Xylene (m/z 91, 106) | 10.56 |
47 | C47 | 2-Heptanone (m/z 58, 71, 81, 99, 114) | 10.75 |
48 | C48 | Nonane (m/z 57, 71, 85, 114) | 11.28 |
49 | C49 | Heptanal (m/z 55, 70, 81, 96) | 11.43 |
50 | C50 | 1-(Furan-2-yl)ethanol (m/z 60, 73, 95, 110) | 12.14 |
51 | C51 | Methyl hexanoate (m/z 59, 74, 87, 99) | 13.23 |
52 | C52 | 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene {a-pinene} (m/z 77, 79, 91, 93, 105, 121, 136) | 13.59 |
53 | C53 | 2,2-Dimethyl-3-methylidenebicyclo[2.2.1]heptane {Camphene} (m/z 67, 79, 93, 107, 121, 136) | 14.51 |
54 | C54 | Unknown (m/z 53, 67, 81, 95, 124) | 14.75 |
55 | C55 | 1-Acetyl-1,2-epoxy-cyclopentane (m/z 55, 83, 97, 111) | 14.94 |
56 | C56 | Propylbenzene (m/z 65, 91, 120) | 15.35 |
57 | C57 | 4,4-Dimethylcyclohex-2-en-1-one (m/z 57, 72, 111, 126) | 15.74 |
58 | C58 | 2-(5-ethenyl-5-methyloxolan-2-yl)propanal (Lilac aldehyde) (m/z 55, 67, 77, 93, 105, 139) | 15.76 |
59 | C59 | 6-Methylheptan-2-one (m/z 58, 71, 95, 110) | 15.91 |
60 | C60 | Benzaldehyde (m/z 51, 77, 106) | 15.98 |
61 | C61 | 1-Ethyl-2-methylbenzene (m/z 77, 91, 105, 120) | 16.11 |
62 | C62 | 5-Methyl-2-furancarbaldehyde (m/z 53, 81, 110, 120) | 16.59 |
63 | C63 | Trimethylbenzene (m/z 77, 91, 105, 120) | 16.72 |
64 | C64 | 6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptane {b-pinene}(m/z 69, 77, 79, 91, 93, 106, 121, 136) | 17.22 |
65 | C65 | 3-Methylbutyl propionate (m/z 57, 70, 75) | 17.49 |
66 | C66 | 1-Heptanol (m/z 56, 70) | 17.63 |
67 | C67 | 1-Ethyl-3-methylbenzene (m/z 57, 70, 105, 120) | 17.75 |
68 | C68 | 1-Octen-3-ol (m/z 57, 72, 85, 110) | 18.19 |
69 | C69 | 6-Octen-2-one (m/z 55, 68, 97, 108, 126) | 18.61 |
70 | C70 | 6-Methylhept-5-en-2-one (m/z 55, 69, 83, 93, 108, 126) | 18.84 |
71 | C71 | 4-Isothiocyanato-1-butene (m/z 55, 72, 85, 113) | 18.87 |
72 | C72 | 1,2,3-Trimethylbenzene (m/z 77, 91, 105, 120) | 19.20 |
73 | C73 | 2-Pentylfuran (m/z 53, 81, 138) | 19.34 |
74 | C74 | 7-methyl-3-methylideneocta-1,6-diene (beta-myrcene) (m/z 69, 79, 93) | 19.42 |
75 | C75 | 6-Methylhept-5-en-2-ol (m/z 41, 55, 69, 95) | 19.78 |
76 | C76 | Decane (m/z 57, 71, 81, 113, 142) | 20.32 |
77 | C77 | 3,7,7-Trimethylbicyclo[4.1.0]hept-3-ene {δ-3-Carene} (m/z 77, 93, 105, 121, 136) | 20.50 |
78 | C78 | Octanal (m/z 57, 69, 84, 95, 100, 146) | 20.63 |
79 | C79 | Isomer of Heptadienal (m/z 53, 67, 81, 110, 281) | 21.33 |
80 | C80 | Hexanoic acid (m/z 60, 73, 87) | 21.65 |
81 | C81 | 1,2,4-trimethylbenzene (m/z 77, 105, 120) | 21.78 |
82 | C82 | 1-methyl-4-propan-2-ylbenzene {p-cymene} (m/z 77, 91, 119, 134) | 22.07 |
83 | C83 | 1-methyl-4-prop-1-en-2-ylcyclohexene {limonene} (m/z 53, 68, 93, 107, 136) | 22.31 |
84 | C84 | 2,3-dihydro-1H-indene {Indane} (m/z 91, 115, 117) | 22.82 |
85 | C85 | 2-Ethylhexan-1-ol (m/z 57, 70, 83, 98) | 23.29 |
86 | C86 | 3,5,5-trimethylcyclohex-3-en-1-one {beta-Isophorone} (m/z 55, 67, 81, 96, 123, 138) | 23.81 |
87 | C87 | 3,7-dimethylocta-1,3,6-triene {Ocimene} (m/z 53, 65, 80, 93, 105, 120, 136) | 24.45 |
88 | C88 | 1-methyl-2-propylbenzene (m/z 77, 91, 105, 134) | 24.53 |
89 | C89 | Butylbenzene (m/z 91, 105, 119, 134) | 24.86 |
90 | C90 | 1-methyl-4-propan-2-ylcyclohexa-1,4-diene {gamma-Terpinene} (m/z 65, 77, 93, 119, 121, 81, 94, 111, 137) | 24.98 |
91 | C91 | 1-methyl-2-propan-2-ylbenzene {cymene} (m/z 91, 119, 134) | 25.13 |
92 | C92 | 1-methyl-3-propylbenzene (m/z 77, 105, 134) | 25.64 |
93 | C93 | (2Z)-3,7-dimethylocta-2,6-dien-1-ol {beta Citral, nerol} (m/z 55, 69, 82, 91, 109, 123) | 25.85 |
94 | C94 | isomer of Octadien-2-one (m/z 53, 81, 95, 109, 124) | 26.41 |
95 | C95 | isomer of Cymene (m/z 55, 81, 95, 119, 134) | 26.54 |
96 | C96 | 1-Octanol (m/z 56, 70, 84) | 26.64 |
97 | C97 | (2E)-3,7-dimethylocta-2,6-dienal {alpha-Citral} (m/z 55, 69, 91, 109, 123) | 26.79 |
98 | C98 | Furan-2,5-dicarboxylic acid (m/z 95, 124) | 26.97 |
99 | C99 | 3,5-Dihydroxytoleune {Methylresorcinol} (m/z 55, 69, 95, 124) | 26.99 |
100 | C100 | 3,7-dimethylocta-4,6-dien-3-ol (m/z 55, 69, 95, 109, 124, 134) | 27.01 |
101 | C101 | 1-ethyl-2-methylbenzene {Cymene} (m/z 91, 119, 134) | 27.01 |
102 | C102 | 4-Ethyl-5-methyl-1, 3-thiazole (m/z 53, 55, 67, 72, 85, 99, 126) | 27.09 |
103 | C103 | 1-methyl-4-propan-2-ylidenecyclohexene {Terpinolene} (m/z 79, 93, 105, 121, 136) | 27.12 |
104 | C104 | Unknown (m/z 57, 70, 83, 124) | 27.16 |
105 | C105 | 2-Nonanone (m/z 58, 71, 95, 124) | 27.96 |
106 | C106 | 5-methyl-5-octen-2-ol (m/z 58, 71, 81, 95, 124, 142) | 27.97 |
107 | C107 | Isomer of octadien-2-one (m/z 58, 81, 95, 109, 124) | 27.98 |
108 | C108 | Undecane (m/z 57, 71, 85) | 28.28 |
109 | C109 | Ethyl heptanoate (m/z 55, 60, 70, 88, 101, 113) | 28.34 |
110 | C110 | 1-ethyl-2-methylbenzene {Cymene} (m/z 57, 71, 119, 134) | 28.41 |
111 | C111 | Nonanal (m/z 57, 70, 82, 98, 114) | 28.71 |
112 | C112 | 1,2,3,4-tetramethylbenzene (m/z 91, 119, 134) | 29.03 |
113 | C113 | 4-methylnonan-5-one (m/z 57, 71, 85, 99, 114) | 29.34 |
114 | C114 | 3,5,5-trimethylcyclohex-3-en-1-one {beta-Isophorone} (m/z 54, 82, 95, 138) | 29.37 |
115 | C115 | methyl octanoate (m/z 55, 74, 87, 115, 148) | 30.18 |
116 | C116 | 2-methyl-2,3-dihydro-1H-indene (m/z 51, 64, 91, 117, 132) | 30.39 |
117 | C117 | 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (m/z 55, 72, 101, 144) | 31.32 |
118 | C118 | Unknown (m/z 55, 70, 85, 144) | 31.77 |
119 | C119 | 1-isothiocyanato-4-methylpentane (m/z 56, 69, 72, 110, 128, 143) | 32.06 |
120 | C120 | (1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol {borneol} (m/z 69, 79, 95, 110) | 32.09 |
121 | C121 | 2-Nonanal (m/z 55, 70, 83, 96) | 32.11 |
122 | C122 | Ethyl benzoate (m/z 77, 105, 122, 150) | 32.50 |
123 | C123 | Naphthalene (m/z 102, 128) | 32.88 |
124 | C124 | Nonanol (m/z 56, 69, 83, 98) | 33.01 |
125 | C125 | Octanoic acid (Caprylic acid) (m/z 60, 73, 85, 101) | 34.08 |
126 | C126 | Decanal (m/z 57, 70, 82, 95, 112) | 34.73 |
127 | C127 | 2,6,6-trimethylcyclohexene-1-carbaldehyde {beta-cyclocitral} (m/z 67, 81, 91, 109, 123, 137, 152) | 35.28 |
128 | C128 | (2Z)-3,7-dimethylocta-2,6-dien-1-ol {geraniol} (m/z 69, 93, 121) | 35.97 |
129 | C129 | (Z)-3,7-dimethylocta-2,6-dienal {isomer of citral} (m/z 69, 84, 94, 109, 134) | 36.53 |
130 | C130 | 5-butyloxolan-2-one {gamma-octalactone} (m/z 85, 100) | 37.44 |
131 | C131 | 2-Decenal (m/z 55, 70, 85, 98, 110) | 37.59 |
132 | C132 | (Z)-3,7-dimethylocta-2,6-dienal {isomer of citral} (m/z 69, 84, 94, 109, 134) | 38.07 |
133 | C133 | Decatriene (m/z 57, 71, 85) | 39.50 |
134 | C134 | (2E)-3,7-dimethylocta-2,6-dien-1-ol{geraniol} (m/z 69, 79, 93, 121, 136) | 42.43 |
135 | C135 | 6,10-dimethylundeca-5,9-dien-2-one (m/z 69, 93, 107, 125, 136, 151) | 44.92 |
136 | C136 | H/C (m/z 57, 71, 85, 99, 113, 141, 183) | 45.11 |
137 | C137 | (1R,4E,9S)-4,11,11-trimethyl-8-methylidenebicyclo[7.2.0]undec-4-ene {caryophyllene} (m/z 69, 79, 93, 105, 120, 133, 147, 161, 189) | 45.20 |
138 | C138 | (3S,4aR,8aS)-8a-methyl-5-methylidene-3-prop-1-en-2-yl-1,2,3,4,4a,6,7,8-octahydronaphthalene {(−)-beta-selinene} (m/z 53, 67, 79, 91, 95, 105, 119, 133, 147, 161, 175, 189, 204) | 45.47 |
139 | C139 | Decapentaene (m/z 57,71,85,99) | 45.82 |
140 | C140 | (3E,6E)-3,7,11-trimethyldodeca-1,3,6,10-tetraene {alpha-Farnesene} (m/z 55, 69, 79, 93, 107, 119, 123) | 45.99 |
Pollen Species | Unique Compounds and Their Percentage Participation |
---|---|
Papaver rhoeas | C89 (0.61%), C112 (1.23%), C116 (0.98%), C128 (4.04%), C129 (2.44%), C134 (1.03%) |
Cistus sp. | C80 (1.08%), C96 (1.97%), C105 (1.07%), C125 (4.01%), C130 (0.75%), C131 (0.44%) |
Pinus halepensis | C53 (1.32%), C74 (14.03%), C77 (10.47%), C103 (1.11%), C122 (0.31%) |
Actinidia chinensis | C69 (2.36%), C93 (0.57%), C97 (2.07%), C109 (0.53%), C140 (0.65%), |
Verbascum sp. | C8 (1.59%), C59 (2.04%), C114 (5.91%), C127 (1.08%) |
Erica manipuliflora | C19 (0.89%), C41 (5.62%), C42 (1.15%), C113 (6.11%), |
Trifolium sp. | C106 (0.76%), C121 (1.22%) |
Ranunculus sp. | C43 (5.8%), C98 (0.76%) |
Cichorium intybus | C1 (0.76%), C13 (3.01%) |
Brassica napus | C35 (3.49%) |
Parthenocissus inserta | C133 (0.95%) |
Lamium sp. | C138 (3.02%) |
Acer sp. | Actinidia chinensis | Brassica napus | Castanea sativa |
---|---|---|---|
C23 (26.79%) | C70 (30.60%) | C102 (54.52%) | C23 (67.90%) |
C111 (16.98%) | C49 (9.93%) | C71 (11.33%) | C111 (10.4%) |
C29 (4.06%) | C111 (8.36%) | C49 (8.02%) | C40 (3.16%) |
Cichorium intybus | Cistus sp. | Erica manipuliflora | Lamium sp. |
C111 (19.31%) | C85 (39.96%) | C12 (22.56%) | C23 (29.31%) |
C37 (16.08%) | C111 (11.43%) | C45 (9.14%) | C7 (18.91%) |
C23 (10.26%) | C28 (10.37%) | C113 (6.11%) | C3 (9.18%) |
Parthenocissus inserta | Papaver rhoeas | Pinus halepensis | Ranunculus sp. |
C24 (47.16%) | C72 (9.43%) | C64 (38.42%) | C33 (17.59%) |
C37 (6.83%) | C37 (9.07%) | C52 (14.87%) | C4 (14.98%) |
C111 (5.23%) | C111 (8.82%) | C74 (14.03%) | C31 (13.9%) |
Rubus sp. | Sisymbrium irio | Trifolium sp. | Verbascum sp. |
C37 (13.32%) | C71 (58.45%) | C40 (15.77%) | C70 (61.99%) |
C17 (9.99%) | C23 (5.51%) | C23 (15.55%) | C114 (5.91%) |
C7 (8.13%) | C44 (3.92%) | C70 (9.88%) | C37 (2.93%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liolios, V.; Tananaki, C.; Kanelis, D.; Rodopoulou, M.A.; Papadopoulou, F. Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.). Insects 2025, 16, 668. https://doi.org/10.3390/insects16070668
Liolios V, Tananaki C, Kanelis D, Rodopoulou MA, Papadopoulou F. Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.). Insects. 2025; 16(7):668. https://doi.org/10.3390/insects16070668
Chicago/Turabian StyleLiolios, Vasilios, Chrysoula Tananaki, Dimitrios Kanelis, Maria Anna Rodopoulou, and Fotini Papadopoulou. 2025. "Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.)" Insects 16, no. 7: 668. https://doi.org/10.3390/insects16070668
APA StyleLiolios, V., Tananaki, C., Kanelis, D., Rodopoulou, M. A., & Papadopoulou, F. (2025). Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.). Insects, 16(7), 668. https://doi.org/10.3390/insects16070668