Incidence of the El Niño–Southern Oscillation Cycle on the Existing Fundamental Niche and Establishment Risk of Some Anastrepha Species (Diptera-Tephritidae) of Horticultural Importance in the Neotropics and Panama
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Investigation Area
2.2. Species Presence
2.3. Climate Data
2.4. Characterisation of the Existing Fundamental Niche
2.5. Establishment Risk Maps
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guisan, A.; Tingley, R.; Baumgartner, J.; Naujokaitis, I.; Sutcliffe, P.; Tulloch, A.; Regan, T.; Brotons, L.; McDonald, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Gaffney, P.M. Roots of the Niche Concept. Am. Nat. 1975, 109, 490. Available online: https://www.jstor.org/stable/2459921 (accessed on 15 December 2023). [CrossRef]
- Greg, J.M.; Rampal, S.E. Stitch the niche—A practical philosophy and visual schematic for the niche concept. J. Biogeogr. 2012, 39, 2103–2111. [Google Scholar] [CrossRef]
- Milesi, F.A.; Lopez, C.J. El concepto de nicho en Ecología aplicada: Del nicho al hecho hay mucho trecho. Ecol. Austral. 2005, 15, 131–148. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1667-782X2005000200004&lng=es&tlng=es (accessed on 15 December 2023).
- Leibold, M.A. The Niche Concept Revisited: Mechanistic Models and Community Context. Ecol. Soc. Am. 1995, 76, 1371–1382. [Google Scholar] [CrossRef]
- Peterson, A.T. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 2003, 78, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.; Soberón, J.; Pearson, R.; Anderson, R.; Martínez, M.E.; Nakamura, M.; Araújo, M. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Norrbom, A.L. Host Plant Database for Anastrepha and Toxotrypana (Diptera: Tephritidae: Toxotrypanini). Diptera Data Dissemination Disk. CD—Not a Journal. 2004. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=108854 (accessed on 15 December 2023).
- Norrbom, A.L.; Neder, L.E. New neotropical species of Trupanea Diptera: Tephritidae with unusual wing patterns. Zootaxa 2014, 3821, 443–456. [Google Scholar] [CrossRef]
- Hernandez, O.V. El género Anastrepha Schiner en México Diptera: Tephritidae, taxonomía, distribución y sus plantas huéspedes. La Cienc Y El Hombre 1992, 12, 190–191. Available online: http://cdigital.uv.mx/handle/123456789/5174 (accessed on 15 December 2023).
- Hernández, O.V.; Bartolucci, A.F.; Morales, V.P.; Frías, D.; Selivon, D. Cryptic species of the Anastrepha fraterculus complex: A multivariate approach for the recognition of South American morphotypes. Ann. Entomol. Soc. 2012, 105, 305–318. [Google Scholar] [CrossRef]
- Norrbom, A.L.; Korytkowski, C.A. New species of Anastrepha (Diptera: Tephritidae), with a key for the species of the megacantha clade. Zootaxa 2012, 34781, 11. [Google Scholar] [CrossRef]
- Garcia, F.R.M.; Ovruski, S.M.; Suárez, L.; Cancino, J.; Liburd, O.E. Biological Control of Tephritid Fruit Flies in the Americas and Hawaii: A Review of the Use of Parasitoids and Predators. Insects 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Aluja, M.; Rull, J.; Sivinski, J.; Allen, L.; Norrbom, A.; Wharton, R.M.; Díaz, F.; López, M. Fruit Flies of the Genus Anastrepha (Diptera: Tephritidae) and Associated Native Parasitoids (Hymenoptera) in the Tropical Rainforest Biosphere Reserve of Montes Azules, Chiapas, Mexico. Environ. Entomol. 2003, 32, 1377–1385. [Google Scholar] [CrossRef]
- Diznarda, S.B.; Flores, R.; Terrazas, G.G.; Leyva, R.E. Evaluación Económica de la Campaña Nacional Contra las Moscas de la Fruta en los Estados de BAJA California, Guerrero Nuevo León, Sinaloa, Sonora y Tamaulipas. México: IICA. 2010. Available online: http://repiica.iica.int/docs/B2041e/B2041e.pdf (accessed on 22 December 2023).
- Valderrama, J.K.; Serrano, M.S.; Fischer, G. Mortalidad de larvas de Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) en frutos de feijoa (Acca sellowiana [O. Berg] Burret) sometidos a un tratamiento cuarentenario de frio. Rev. Colomb. Entomol. 2005, 31, 171–176. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882005000200011&lng=en&tlng=es (accessed on 18 December 2023). [CrossRef]
- Saavedra, D.J.; Galeano, O.P.; Canal, N. Ecological relationships between host fruits, frugivorous flies and parasitoids in a fragment of tropical dry forest. Rev. Sci. Agric. 2017, 34, 32–49. [Google Scholar] [CrossRef]
- Nolasco, N.; Iannacone, J. Fluctuación estacional de moscas de la fruta Anastrepha spp. y Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) en trampas McPhail en Piura y en Ica, Perú. Acta Zool. Mex. 2008, 24, 33–44. [Google Scholar] [CrossRef]
- Conde-Blanco, E.A.; Loza-Murguia, M.G.; Asturizaga-Aruquipa, L.B.; Ugarte-Anaya, D.; Jiménez-Espinoza, R. Modelo de fluctuación poblacional de moscas de la fruta Ceratitis capitata (Wiedemann 1824) y Anastrepha spp (Díptera: Tephritidae) en dos rutas en el municipio de Caranavi, Bolivia. J. Selva Andin. Res. Soc. 2018, 9, 3–24. Available online: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2072-92942018000100002&lng=es&tlng=es (accessed on 19 December 2023). [CrossRef]
- González, T.D.; Córdoba, A.A.; Dáttilo, W.; Lira, N.A.; Sánchez, G.R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef]
- Valdés, A.L.; Guillén, S.R. The evolutionary outcomes of climate-change-induced hybridization in insect populations. Curr. Opin. Insect Sci. 2022, 54, 100966. [Google Scholar] [CrossRef]
- Vanoye, E.V.; Pérez, C.R.; Gaona, G.G.; Lara, V.; Barrientos, L.L. Fluctuación poblacional de Anastrepha ludens en la región de Santa Engracia, Tamaulipas, México. Rev. Mex. Cienc. Agrícolas 2015, 6, 1077–1091. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342015000500014&lng=es&tlng=es (accessed on 21 December 2023).
- Food and Agriculture Organization of the Unites Nations; Fondo Internacional de Desarrollo Agricola; Organization Mundial de la Salud; Programa Mundial de Alimentos y Fondo de las Naciones Unidas por la Infancia. Versión Resumida de El Estado de la Seguridad Alimentaria y la Nutrición en el Mundo. Transformación de los Sistemas Alimentarios para que Promuevan Dietas Asequibles y Saludables. Roma. 2020. Available online: https://openknowledge.fao.org/items/c3186f14-326a-4195-9c5d-770667fecc44 (accessed on 23 December 2023).
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the Unites Nations; Centro de Cooperacion Internacional en Investigación Agrícola para el Desarrollo. Frutas y Hortalizas—Oportunidades y Desafíos para la Agricultura Sostenible a Pequeña Escala. Roma. 2021. Available online: https://openknowledge.fao.org/items/91f8f8b0-05db-41db-bfa6-426b8f76e80c (accessed on 23 December 2023).
- Food and Agriculture Organization of the Unites Nations. Análisis del Mercado de las Principales Frutas Tropicales en Roma. 2022. Available online: https://www.fao.org/3/cb6897es/cb6897es.pdf (accessed on 23 December 2023).
- Lopez, H.; Lee, S.K.; Kim, D. Projections of faster onset and slower decay of El Niño in the 21st century. Nat. Commun. 2022, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Luo, X.; Yang, Y.-M.; Liu, L. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, S.F.; Hortal, J.; Tejedo, M.; Duarte, H.; Cassemiro, F.A.; Navas, C.A.; Diniz, F.J.A. Climatic niche at physiological and macroecological scales: The thermal tolerance-geographical range interface and niche dimensionality. Glob. Ecol. Biogeogr. 2014, 23, 446–456. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
- Comisión Económica para América Latina. La Economía del Cambio Climático en América Latina y el Caribe: Paradojas y Desafíos del Desarrollo Sostenible. Programa EUROCLIMA Cambio Climático, Componente Socioeconómico (CEC/10/001). 2015. Available online: https://hdl.handle.net/11362/37311 (accessed on 27 December 2023).
- Sanchez, R.R. Respuestas Urbanas al Cambio Climático en América Latina. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 563. 2013. Available online: https://hdl.handle.net/11362/36622 (accessed on 28 December 2023).
- Magrin, G. Adaptación al Cambio Climático en América Latina y el Caribe. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 692. 2015. Available online: https://hdl.handle.net/11362/39842 (accessed on 28 December 2023).
- Rascón, V.A.E.; Cervantes, R.E. Vulnerabilidad social y clima extremo en estudios de América Latina. 2000–2019. Tlalli. Rev. Investig. Geogr. 2022, 8, 6–32. [Google Scholar] [CrossRef]
- Degracia, A.B.; Jiménez, J.Á.; Alvarado, A.B.; Valdespino, R.A.; Altamiranda-Saavedra, M. Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama. Insects 2023, 14, 714. [Google Scholar] [CrossRef]
- Murray, W.E. La Globalización de la Fruta, los Cambios Locales y el Desigual Desarrollo Rural en América Latina: Un Análisis Crítico del Complejo de Exportación de Fruta Chilena. EURE, XXV(75). 1999. Available online: https://www.redalyc.org/articulo.oa?id=19607504 (accessed on 28 December 2023).
- Aguilar, J.J.M.; Berrío, A.R.; Hidalgo, E.A.M.; Pincay, C.A.M. Organización de la Diversidad Vegetal en la Presencia de Anastrepha spp. en Vinces, Ecuador. Rev. Cienc. Soc. 2021, 27, 355–371. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8081777 (accessed on 28 December 2023).
- Aluja, M.; Ovruski, S.M.; Mello Garcia, F.R.; Hurtado, M.; Enkerlin, W. Fruit Fly (Tephritidae) Management in the Neotropical Region: History, State of the Art, and Perspectives. In Management of Fruit Flies in the Americas; Mello Garcia, F.R., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Olson, D.; Dinerstein, E.; Wikram, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Biosci. J. 2001, 51, 933. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.B.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hansen, M.; Locke, M.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Biosci. J. 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.; Mittermeier, C. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Climate Change-Mitigation of Climate Change; OSTI Identifier: 21017235; Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2007. Available online: https://www.osti.gov/biblio/21017235 (accessed on 29 December 2023).
- Jarvis, A.; Hijmans, R. The Effect of Climate Change on Crop Wild Relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. Available online: https://www.sciencebase.gov/catalog/item/5057b9aae4b01ad7e028b88e (accessed on 29 December 2023). [CrossRef]
- Uchoa, A.M. Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control; Intech Open: London, UK, 2012; Volume 12, pp. 271–300. [Google Scholar] [CrossRef]
- Alvarado, G.L.; Medianero, E. Especies de Parasitoides Asociados a Moscas de la Fruta del Género Anastrepha (Diptera: Tephritidae) en Panamá, República de Panamá. Scientia 2021, 25, 47–62. Available online: https://www.researchgate.net/publication/295251776 (accessed on 29 December 2023).
- Uchôa, M.A.; Nicácio, J. New records of Neotropical fruit flies (Tephritidae), lance flies (Lonchaeidae) (Diptera: Tephritoidea), and their host plants in the South Pantanal and adjacent areas, Brazil. Ann. Entomol. Soc. 2010, 103, 723–733. [Google Scholar] [CrossRef]
- Cobos, M.E.; Jiménez, L.; Nuñez, P.C.; Romero, A.D.; Simoes, M. Sample data and training modules for cleaning biodiversity information. Biodiversity 2018, 13, 49–50. [Google Scholar] [CrossRef]
- Lammens, A.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Shaw, J.G.; Sanchez, M.; Spishakoff, L.M.; Trujillo, G.F.; Loppez, D. Dispersal and Migration of Tepa-Sterilized Mexican Fruit Flies. J. Econ. Entomol. 1967, 60, 992–994. [Google Scholar] [CrossRef]
- Chambers, D.L.; OConnell, T.B. A Flight Mill for Studies with the Mexican Fruit Fly. Ann. Entomol. Soc. 1969, 62, 917–920. [Google Scholar] [CrossRef]
- Mayara, R.; Dos Santos, M.D.; Martins, M.; Fornazier, J.M.; Uramoto, K.; Ferreira, F.; Zucchi, R.A.; Conde, W.A. Aggregation and spatio-temporal dynamics of fruit flies (Diptera, Tephritidae) in papaya orchards associated with different area delimitations in Brazil. Acta Sci. 2020, 44, e53466. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. El Nino Monitoring and Outlook/TCC. Japan Meteorol. Agency, Tokio Clim. Cent 2019. Available online: https://www.data.jma.go.jp/multi/index.html?lang=es (accessed on 13 September 2019).
- Bureau of Meteorology. Climate Influences Timeline. Australian Government. 2018. Available online: http://www.bom.gov.au/ (accessed on 13 November 2018).
- National Weather Service, National Oceanic and Atmospheric Administration. NOAA’s Climate Prediction Center. National Weather Service. 2018. Available online: https://www.weather.gov/ (accessed on 18 November 2018).
- Dupin, J.; Smith, S.D. Integrating historical biogeography and environmental niche evolution to understand the geographic distribution of Datureae. Am. J. Bot. 2019, 106, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Chan, K.W.; So, W.W.M. A systematic review of remote laboratory work in science education with the support of visualizing its structure through the Hist Cite and Cite Space software. Int. J. Sci. Math. Educ. 2017, 15, 1217–1236. [Google Scholar] [CrossRef]
- Moo-Llanes, D.A.; Arenas, C.Y.; Baak, B.C. Shifts ecological niche of Lutzomyia peruensis under climate change scenarios in Peru. Med. Vet. Entomol. 2017, 31, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.C.J.; Romero, A.L.V.; Miranda, E.D.R. Neotropical páramos as biogeographic units. Biol. Trop. 2020, 68, 503–516. [Google Scholar] [CrossRef]
- Anderson, R.P.; Peterson, T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Modell. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Cruz, C.G.; Villaseñor, J.L.; López, M.L.; Martínez, M.E.; Ortiz, E. Selección de Predictores Ambientales Para el Modelado de la Distribución de Especies en Maxent. Rev. Chapingo. Ser. 2014, 20, 187–201. Available online: https://www.scielo.org.mx/scielo.php?pid=S2007-40182014000200005&script=sci_abstract (accessed on 30 December 2023).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Soberón, J.; Osorio, O.L.; Peterson, T. Diferencias conceptuales entre modelado de nicho y modelado de área de distribución. Rev. Mex. Biodivers. 2017, 88, 437–441. [Google Scholar] [CrossRef]
- Flores, P.; Gamarra, H.; Panchi, N.; Fonseca, C.; Carhuapoma, P.; Pradel, W.; Gonzalez, M.A.; Rodriguez, H.; Velasco, C. Mapas de Riesgo: Herramienta para la Toma de Decisiones en el Control de Plagas Frente al Cambio Climático. Programa de Investigación del CGIAR Sobre Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS). 2020. Available online: https://cgspace.cgiar.org/handle/10568/111451 (accessed on 30 December 2023).
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Mateo, R.; Felcisimo, Á.M.; Muñoz, J. Species distributions models: A synthetic revisión. Rev. Chil. Hist. Nat. 2011, 84, 217–240. [Google Scholar] [CrossRef]
- Altamiranda, S.M.; Gutiérrez, D.J.; Araque, A.; Valencia, D.J.; Gutiérrez, R.; Martínez, R.A. Effect of El Niño Southern Oscillation cycle on the potential distribution of cutaneous leishmaniasis vector species in Colombia. PLoS Negl. Trop. Dis. 2020, 14, e0008324. [Google Scholar] [CrossRef] [PubMed]
- ArcGIS Pro Geoprocessing Tool Reference. Available online: https://pro.arcgis.com/en/pro-app/3.1/tool-reference/main/arcgis-pro-tool-reference.htm (accessed on 29 on December 2023).
- Johnston, G. Representativeness of Protected Areas in the Algonquin to Adirondacks Region: A Gap Analysis. Doctoral Dissertation, Queen’s University, Kingston, ON, Canada, 2023. Available online: http://hdl.handle.net/1974/31671 (accessed on 30 December 2023).
- Qiao, H.; Peterson, A.T.; Campbell, L.P.; Soberón, J.; Ji, L.; Escobar, L.E. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 2016, 39, 805–813. [Google Scholar] [CrossRef]
- Robayo, C.A.P.; Escobar, L.E.; Osorio, O.L.A.; Nori, J.; Varela, S.; Martinez, M.E.; Velasquez, T.J.; Rodriguez, S.C.; Munguia, M.; Castaneda, A.N.P.; et al. TIntroducción a los Análisis Espaciales con Énfasis en Modelos de Nicho Ecológico. Biodiver. Informat. 2017, 12. [Google Scholar] [CrossRef]
- Owens, H.L.; Campbell, L.P.; Dornak, L.L.; Saupe, E.E.; Barve, N.; Soberón, J.; Ingenloff, K.; Lira, N.A.; Hensz, C.M.; Myers, C.E.; et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Modell. 2013, 263, 10–18. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Bebber, D.P.; Gurr, S.J. Biotic interactions and climate in species distribution modelling. BioRxiv 2019. [Google Scholar] [CrossRef]
- Ashraf, U.; Chaudhry, M.N.; Peterson, A.T. Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere 2021, 12, 8. [Google Scholar] [CrossRef]
- Amat, E.; Altamiranda-Saavedra, M.; Canal, N.A.; Gómez, P.L.M. Changes in the potential distribution of the guava fruit fly Anastrepha striata (Diptera, Tephritidae) under current and possible future climate scenarios in Colombia. Bull. Entomol. Res. 2022, 112, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Pérez, H.R.; López, B.M.; Hernández, W.R.; Muñoz, F.J.; Vidal, J.; Santos, R.M.D. El nicho ecológico como herramienta para predecir áreas potenciales de dos especies de pino. Rev. Mex. Cienc. 2018, 9, 47–68. [Google Scholar] [CrossRef]
- Donatelli, M.R.D.; Magarey, S.B.; Willocquet, L.J.P.; Whish, S.S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef]
- Aluja, M.; Ordano, M.; Guillén, L.; Rull, R. Understanding Long-Term Fruit Fly (Diptera: Tephritidae) Population Dynamics: Implications for Areawide Management. J. Econ. Entomol. 2012, 105, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.F.R. Chapers 15, Parasitoid Species Associated with Fruit Flies of the Genus Anastrepha (Diptera, Tephritidae) in Panama. In Management of Fruit Flies in the Americas; Springer International Publishing: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Alberti, J.D.P.; Iribarne, O. ¿Blanco, negro o escala de grises?: Determinación de la contribución relativa del nicho ecológico y la teoría neutral en los ensambles de especies. Ecol. Austral. 2018, 28, 104–112. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1667-782X2018000100013&lng=es&tlng=es (accessed on 2 January 2024). [CrossRef]
- Castañeda, M.D.R.; Osorio, F.; Canal, N.A.; Galeano, P.É. Especies, distribución y hospederos del género Anastrepha Schiner en el departamento del Tolima, Colombia. Agron. Colomb. 2010, 38, 265–271. Available online: https://www.redalyc.org/articulo.oa?id=180315602010 (accessed on 2 January 2024).
- Joachim, I.S.; Magalhães, T.C.; Silva, N.A.M.D.; Guimarães, A.N.; Nascimento, A.S. Longevidad y fecundidad de cuatro especies de Anastrepha (Diptera: Tephritidae). Entomol. Neotropical. 2003, 32, 543–549. Available online: https://www.scielo.br/j/ne/a/qGrX4Jm96QZNzZXMTcXgTdy/?lang=en (accessed on 2 January 2024). [CrossRef]
- Guisan, A.; Petitpierre, B.; Broennimann, O.; Daehler, C.; Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 2014, 29, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Valiente, M.Ó. Evolución en el Estudio del Fenómeno ENSO (El Niño-Oscilación del Sur): De Anomalía «local» a la Predicción de Variaciones Climáticas Globales. Investig. Geogr. 1999, 21, 5–20. Available online: https://www.redalyc.org/articulo.oa?id=17654250001 (accessed on 30 December 2023).
- Espinosa, C.; Luzuriaga, M.A.L.; Escudero, A. Bosques tropicales secos de la región Pacífico Ecuatorial: Diversidad, estructura, funcionamiento e implicaciones para la conservación. Ecosistemas 2012, 21, 167–179. Available online: https://www.redalyc.org/articulo.oa?id=54026849013 (accessed on 2 January 2024).
- Ramos, P.A.M.; Yábar, L.E.; Ramos, P.J.C. Diversidad, fluctuación poblacional y hospedantes de moscas de la fruta Anastrepha spp. y Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) en el valle de Abancay, Apurímac, Perú. Acta Zool. Mex. 2019, 35, 1–21. [Google Scholar] [CrossRef]
- Ibarra, D.V.I.; Lebgue, K.T.; Viramontes, O.O.; Reyes, C.I.; Ortega, G.J.A.; Morales, N.C. Modelo de Nicho Fundamental para Coryphantha chihuahuensis (Cactacea) en el estado de Chihuahua, México. Ecol. Apl. 2016, 15, 11–18. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Alimentación y la Agricultura—Convención Internacional Fitosanitaria, Enfoque de Sistemas para el Manejo del Riesgo de Plagas de Moscas de la Fruta (Tephritidae). Available online: https://www.fao.org/3/k6768s/k6768s.pdf (accessed on 2 February 2024).
- Castillo, D.A.M. Incidencia del Tratamiento Hidrotérmico Aplicado en la Fase Larval de Anastrepha Striata Schiner (Diptera: Tephritidae) Sobre la Descendencia de la Especie. Doctoral Dissertation, Universidad Central de Venezuela, Distrito Capital, Venezuela, 2013. Available online: http://saber.ucv.ve/handle/10872/4192 (accessed on 2 February 2024).
- Soberon, J.; Arroyo, P.B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE 2017, 12, 4. [Google Scholar] [CrossRef]
- Tucuch, C.; Fulgencio, M.; Chi-Que, G.; Orona, C.F. Dinámica poblacional de adultos de la mosca mexicana de la fruta Anastrepha sp. (Diptera: Tephritidae) en Campeche, México. Agric. Téc. Méx. 2008, 34, 341–347. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-25172008000300009&lng=es&tlng=es (accessed on 5 February 2024).
- Organización de las Naciones Unidas para la Alimentación y la Agricultura—Convención Internacional Fitosanitaria, Establecimiento de Áreas Libres de Plagas para Moscas de la Fruta (Tephritidae). 2019. NIMF26-29. Available online: https://www.fao.org/3/k7557s/k7557s.pdf (accessed on 5 February 2024).
- Organismo Internacional Regional de Sanidad Agropecuaria. Guía Básica de las Principales Moscas de la Fruta-Plagas en el Mundo. Available online: https://web.oirsa.org/wp-content/uploads/2023/02/World-Fruit-Fly_Guide-Spanish-Proof-2.pdf (accessed on 5 February 2024).
- Organización de las Naciones Unidas para la Alimentación y la Agricultura Convención Internacional Fitosanitaria- Convención Internacional Fitosanitaria, Lista de Plagas Reglamentadas. Available online: https://www.ippc.int/es/countries/all/regulatedpests/ (accessed on 6 February 2024).
- Santos, R.P.D.; Silva, J.G.; Miranda, E.A. The Past and Current Potential Distribution of the Fruit Fly Anastrepha obliqua (Diptera: Tephritidae) in South America. Neotrop. Entomol. 2020, 49, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Guillén, L.; Pascacio, V.C.; Osorio, P.I.; Ortega, C.R.; Enciso, O.E.; Altúzar, M.A.; Velázquez, O.; Aluja, M. Coping with global warming: Adult thermal thresholds in four pestiferous Anastrepha species determined under experimental laboratory conditions and development/survival times of immatures and adults under natural field conditions. Front. Physiol. 2022, 13, 991923. [Google Scholar] [CrossRef] [PubMed]
- Enfield, D.B.; Alfaro, E.J. The Dependence of Caribbean Rainfall on the Interaction of the Tropical Atlantic and Pacific Oceans. J. Clim. 1999, 12, 2093–2103. [Google Scholar] [CrossRef]
- Organismo Internacional de Energía Atómica. Plan Estratégico Regional de Centroamérica, Panamá y Belice, para Exportar Frutas y Hortalizas Producidas en Áreas Libres y Baja Prevalencia de Moscas de la Fruta. Austria. 2021. Available online: https://www.iaea.org/sites/default/files/ipc-plan-estrategico-centroamerica-moscas-de-la-fruta.pdf (accessed on 6 February 2024).
- Takahashi, K.; Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 2016, 46, 1627–1645. [Google Scholar] [CrossRef]
- Takahashi, K. Variedades de El Niño. In Boletín Técnico: Generación de Modelos Climáticos para el Pronóstico de la Ocurrencia del Fenómeno El Niño; Instituto Geofísico del Perú: Lima, Peru, 2014; Volume 1, pp. 4–7. Available online: http://hdl.handle.net/20.500.12816/5042 (accessed on 2 February 2024).
- Gómez, P.; Monge, N.J. Climate and the Ecology of Some Insects from the Northwestern Region of Costa Rica. 2007. Available online: https://www.researchgate.net/publication/237279246 (accessed on 3 January 2024).
- Teixeira, C.M.; Krüger, A.P.; Nava, D.E.; Garcia, F.R.M. Potential global distribution of the south American cucurbit fruit fly Anastrepha grandis (Diptera: Tephritidae). Crop Prot. 2021, 145, 105647. [Google Scholar] [CrossRef]
- Bolzan, A.; Nava, D.E.; Smaniotto, G.I.; Mello Garcia, F.R.M. Biology of Anastrepha grandis (Diptera: Tephritidae) in Different Cucurbits. J. Econ. Entomol. 2015, 108, 1034–1039. [Google Scholar] [CrossRef]
- Atencio, V.R.; Collantes, G.R. Applied approach to entomology during the last forty-years in Panama. Agron. Mesoam. 2022, 34, 50756. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degracia, A.B.; Ávila Jiménez, J.; Alvarado, A.B.; Valdespino, R.A.; Altamiranda-Saavedra, M. Incidence of the El Niño–Southern Oscillation Cycle on the Existing Fundamental Niche and Establishment Risk of Some Anastrepha Species (Diptera-Tephritidae) of Horticultural Importance in the Neotropics and Panama. Insects 2024, 15, 331. https://doi.org/10.3390/insects15050331
Degracia AB, Ávila Jiménez J, Alvarado AB, Valdespino RA, Altamiranda-Saavedra M. Incidence of the El Niño–Southern Oscillation Cycle on the Existing Fundamental Niche and Establishment Risk of Some Anastrepha Species (Diptera-Tephritidae) of Horticultural Importance in the Neotropics and Panama. Insects. 2024; 15(5):331. https://doi.org/10.3390/insects15050331
Chicago/Turabian StyleDegracia, Arturo Batista, Julián Ávila Jiménez, Anovel Barba Alvarado, Randy Atencio Valdespino, and Mariano Altamiranda-Saavedra. 2024. "Incidence of the El Niño–Southern Oscillation Cycle on the Existing Fundamental Niche and Establishment Risk of Some Anastrepha Species (Diptera-Tephritidae) of Horticultural Importance in the Neotropics and Panama" Insects 15, no. 5: 331. https://doi.org/10.3390/insects15050331
APA StyleDegracia, A. B., Ávila Jiménez, J., Alvarado, A. B., Valdespino, R. A., & Altamiranda-Saavedra, M. (2024). Incidence of the El Niño–Southern Oscillation Cycle on the Existing Fundamental Niche and Establishment Risk of Some Anastrepha Species (Diptera-Tephritidae) of Horticultural Importance in the Neotropics and Panama. Insects, 15(5), 331. https://doi.org/10.3390/insects15050331