UV Light-Emitting-Diode Traps for Collecting Nocturnal Biting Mosquitoes in Urban Bangkok
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Trapping Method
2.3. Experimental Design
2.4. Mosquito Collection
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanou, A.; Moussa Guelbéogo, W.; Nelli, L.; Hyacinth Toé, K.; Zongo, S.; Ouédraogo, P.; Cissé, F.; Mirzai, N.; Matthiopoulos, J.; Sagnon, N.F.; et al. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar. J. 2019, 18, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.W.; Zelbst, P.J.; Meacham, J.; Bhadauria, V.S. Green supply chain management practices: Impact on performance. Int. J. Supply Chain Manag. 2012, 17, 290–305. [Google Scholar] [CrossRef]
- Balamurugan, R.; Kandasamy, P. Effectiveness of portable solar-powered light-emitting diode insect trap: Experimental investigation in a groundnut field. J. Asia-Pac. Entomol. 2021, 24, 1024–1032. [Google Scholar] [CrossRef]
- Green, D.; Mackay, D.; Whalen, M. Next generation insect light traps: The use of LED light technology in sampling emerging aquatic macroinvertebrates. Aust. Entomol. 2012, 39, 189–194. [Google Scholar]
- Muirhead-Thompson, R. Trap Responses of Flying Insects: The Influence of Trap Design on Capture Efficiency; Academic Press: Cambridge, MA, USA, 2012; p. 304. [Google Scholar]
- Marchioro, M.; Rassati, D.; Faccoli, M.; Van Rooyen, K.; Kostanowicz, C.; Webster, V.; Mayo, P.; Sweeney, J. Maximizing bark and ambrosia beetle (Coleoptera: Curculionidae) catches in trapping surveys for longhorn and jewel beetles. J. Econ. Entomol. 2020, 113, 2745–2757. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef] [Green Version]
- O’hagan, J.; Khazova, M.; Price, L. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye 2016, 30, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Honda, K.-I. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Truxa, C.; Fiedler, K. Attraction to light-from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol. 2012, 109, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Tamuri, A.; Muhamad, A.; Akmal, S.; Lani, M.; Kundwal, M.; Daud, Y. Ultravoilet (UV) Light Spectrum of Flourescent Lamps. In Proceedings of the 8th SEATUC Symposium, Johor Bahru, Malaysia, 4–5 March 2014. [Google Scholar]
- Cohnstaedt, L.; Gillen, J.I.; Munstermann, L.E. Light-emitting diode technology improves insect trapping. J. Am. Mosq. Control Assoc. 2008, 24, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, A.H.; Thomas, M.; Bhandari, R.; Meshram, H. Malaise trap and insect sampling: Mini Review. Bio Bull. 2016, 2, 35–40. [Google Scholar]
- Hoel, M.; de Zeeuw, A. Can a focus on breakthrough technologies improve the performance of international environmental agreements? Environ. Resour. Econ. 2010, 47, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Maverakis, E.; Miyamura, Y.; Bowen, M.P.; Correa, G.; Ono, Y.; Goodarzi, H. Light, including ultraviolet. J. Autoimmun. 2010, 34, J247–J257. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ponlawat, A.; Khongtak, P.; Jaichapor, B.; Pongsiri, A.; Evans, B.P. Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand. Parasites Vectors 2017, 10, 378. [Google Scholar] [CrossRef] [Green Version]
- Sirikasemsuk, K. A review on incomplete latin square design of any order. In AIP Conference Proceedings; AIP Publishing LLC: Long Island, NY, USA, 2016; p. 030022. [Google Scholar]
- Rattanarithikul, R.; Harrison, B.A.; Panthusiri, P.; Coleman, R.E. Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1–80. [Google Scholar]
- Rattanarithikul, R.; Harbach, R.E.; Harrison, B.A.; Panthusiri, P.; Jones, J.; Coleman, R.E. Illustrated key to the mosquito of Thailand II. Genera Culex and Lutzia. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1–97. [Google Scholar]
- Rattanarithikul, R.; Harrison, B.A.; Panthusiri, P.; Peyton, E.L.; Coleman, R.E. Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J. Trop. Med. Public Health 2006, 37, 1–85. [Google Scholar] [PubMed]
- Rattanarithikul, R.; Harrison, B.A.; Harbach, R.E.; Panthusiri, P.; Coleman, R.E. Illustrated Keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J. Trop. Med. Public Health 2006, 37, 1–128. [Google Scholar]
- Rattanarithikul, R.; Harbach, R.E.; Harrison, B.A.; Panthusiri, P.; Coleman, R.E. Illustrated keys to the mosquitoes of Thailand V. Genera Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites. Southeast Asian J. Trop. Med. Public Health 2007, 38, 1–65. [Google Scholar] [PubMed]
- McDermott, E.G.; Mullens, B.A. The Dark Side of Light Traps. J. Med. Entomol. 2017, 55, 251–261. [Google Scholar] [CrossRef]
- Abong’o, B.; Gimnig, J.E.; Longman, B.; Odongo, T.; Wekesa, C.; Webwile, A.; Oloo, B.; Nduta, M.; Muchoki, M.; Omoke, D.; et al. Comparison of four outdoor mosquito trapping methods as potential replacements for human landing catches in western Kenya. Parasites Vectors 2021, 14, 320. [Google Scholar] [CrossRef]
- Bishop, A.L.; Bellis, G.A.; McKenzie, H.J.; Spohr, L.J.; Worrall, R.J.; Harris, A.M.; Melville, L. Light trapping of biting midges Culicoides spp.(Diptera: Ceratopogonidae) with green light-emitting diodes. Aust. J. Entomol. 2006, 45, 202–205. [Google Scholar] [CrossRef]
- Bentley, M.T.; Kaufman, P.E.; Kline, D.L.; Hogsette, J.A. Response of adult mosquitoes to light-emitting diodes placed in resting boxes and in the field. J. Am. Mosq. Control Assoc. 2009, 25, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Wakefield, A.; Broyles, M.; Stone, E.L.; Jones, G.; Harris, S. Experimentally comparing the attractiveness of domestic lights to insects: Do LED s attract fewer insects than conventional light types? Ecol. Evol. 2016, 6, 8028–8036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Zheng, Y.; Wu, W.; Fu, Y. Field evaluation of different wavelengths light-emitting diodes as attractants for adult Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2014, 43, 409–414. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Alarcón-Elbal, P.M.; Valle-Mora, J.; Goldarazena, A. Comparison of different light sources for trapping Culicoides biting midges, mosquitoes and other dipterans. Vet. Parasitol. 2016, 226, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Saeung, M.; Jhaiaun, P.; Bangs, M.J.; Ngoen-Klan, R.; Chareonviriyaphap, T. Transmitted light as attractant with mechanical traps for collecting nocturnal mosquitoes in urban Bangkok, Thailand. J. Am. Mosq. Control Assoc. 2021, 37, 132–142. [Google Scholar] [CrossRef]
- Jhaiaun, P.; Panthawong, A.; Saeung, M.; Sumarnrote, A.; Kongmee, M.; Ngoen-Klan, R.; Chareonviriyaphap, T. Comparing Light—Emitting—Diodes light traps for catching anopheles mosquitoes in a forest setting, Western Thailand. Insects 2021, 12, 1076. [Google Scholar] [CrossRef]
- Lillibridge, K.M.; Parsons, R.; Randle, Y.; Da Rosa, A.P.T.; Guzman, H.; Siirin, M.; Wuithiranyagool, T.; Hailey, C.; Higgs, S.; Bala, A.A. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am. J. Trop. Med. Hyg. 2004, 70, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Pipitgool, V.; Waree, P.; Sithithaworn, P.; Limviroj, W. Studies on biting density and biting cycle of Culex quinquefasciatus, say in Khon Kaen City, Thailand. Southeast Asian J. Trop. Med. Public Health 1998, 29, 333–336. [Google Scholar]
- Uttah, E.C.; Wokem, G.N.; Okonofua, C. The abundance and biting patterns of Culex quinquefasciatus Say (Culicidae) in the coastal region of Nigeria. Int. Sch. Res. Not. 2013, 2013, 640691. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Basu, P.; Sajal Bhattacharya, C. The southern house mosquito, Culex quinquefasciatus: Profile of a smart vector. J. Entomol. Zool. Stud. 2016, 4, 73–81. [Google Scholar]
- Chou, C.-H.; Chen, F.-C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 2014, 6, 8444–8458. [Google Scholar] [CrossRef]
- World Health Organization. Good Health Adds Life to Years: Global Brief for World Health Day 2012; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Raksakoon, C.; Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 2021, 10, 80. [Google Scholar] [CrossRef]
- Gao, Q.; Li, C.; Liu, Y.; Zhang, J.; Wang, X.-J.; Liu, F. Manipulating trap filling of persistent phosphors upon illumination by using a blue light-emitting diode. J. Mater. Chem. C 2020, 8, 6988–6992. [Google Scholar] [CrossRef]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects 2018, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Upham, N.S. Los Angeles, California; Occidental College: Los Angeles, CA, USA, 2008. [Google Scholar]
- Nirmal, A.; Sidar, Y.K.; Gajbhiye, R.; Laxmi, J. The effects of moonlight phases on light-trap catches of insects. J. Entomol. Zool. Stud. 2017, 5, 1209–1210. [Google Scholar]
- Yela, J.L.; Holyoak, M. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ. Entomol. 1997, 26, 1283–1290. [Google Scholar] [CrossRef]
- Provost, M.W. The influence of moonlight on light-trap catches of mosquitoes. Ann. Entomol. Soc. Am. 1959, 52, 261–271. [Google Scholar] [CrossRef]
- Barr, R.A.; Smith, T.A.; Boreham, M.M.; White, K.E. Evaluation of some factors affecting the efficiency of light traps in collecting mosquitoes. J. Econ. Entomol. 1963, 56, 123–127. [Google Scholar] [CrossRef]
- Bidlingmayer, W. The effect of moonlight on the flight activity of mosquitoes. Ecology 1964, 45, 87–94. [Google Scholar] [CrossRef]
- Mulhern, T.D. A new development in mosquito traps. N. J. Mosq. Extermin. Assoc. Proc. 21 1934, 137, 140. [Google Scholar]
- Reinert, W.C. The New Jersey light trap: An old standard for most mosquito control programs. In Proceedings of the Seventy-Sixth Annual Meeting of the New Jersey Mosquito Control Association; Atlantic County Mosquito Unit: Trenton, NJ, USA, 1989; pp. 17–25. [Google Scholar]
- Kline, D.L. Traps and trapping techniques for adult mosquito control. J. Am. Mosq. Control Assoc. 2006, 22, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Silver, J.B. Mosquito Ecology: Field Sampling Methods; Springer: Berlin/Heidelberg, Germany, 2008; pp. 845–946. [Google Scholar]
- Ritchie, S.A.; Cortis, G.; Paton, C.; Townsend, M.; Shroyer, D.; Zborowski, P.; Hall-Mendelin, S.; Van Den Hurk, A.F. A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J. Med. Entomol. 2013, 50, 185–194. [Google Scholar] [CrossRef]
- Li, Y.; Su, X.; Zhou, G.; Zhang, H.; Puthiyakunnon, S.; Shuai, S.; Cai, S.; Gu, J.; Zhou, X.; Yan, G. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasites Vectors 2016, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Service, M. A battery-operated light-trap for sampling mosquito populations. Bull. World Health Organ. 1970, 43, 635. [Google Scholar]
- Wilton, D.; Fay, R. Responses of adult Anopheles stephensi to light of various wavelengths. J. Med. Entomol. 1972, 9, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.I.; Seo, B.Y.; Shin, E.-H.; Burkett, D.A.; Lee, J.-K.; Shin, Y.H. Efficiency evaluation of Nozawa-style black light trap for control of anopheline mosquitoes. Korean J. Parasitol. 2009, 47, 159. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-X.; Smith, M.L.; Fulcher, A.; Kaufman, P.E.; Zhao, T.-Y.; Xue, R.-D. Field evaluation of three new mosquito light traps against two standard light traps to collect mosquitoes (Diptera: Culicidae) and non-target insects in northeast Florida. Fla. Entomol. 2015, 98, 114–117. [Google Scholar] [CrossRef]
- Miller, B.; Crabtree, M.; Savage, H. Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol. Biol. 1996, 5, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, C.; Baker, E.; Sun, C. Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules. Sci. Rep. 2015, 5, 11977. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Shibuya, K.; Sato, M.; Saito, Y. Lethal effects of short-wavelength visible light on insects. Sci. Rep. 2014, 4, 7383. [Google Scholar] [CrossRef]
- Kim, H.-C.; Kim, M.-S.; Choi, K.-S.; Hwang, D.-U.; Johnson, J.L.; Klein, T.A. Comparison of adult mosquito black-light and light-emitting diode traps at three cowsheds located in malaria-endemic areas of the Republic of Korea. J. Med. Entomol. 2017, 54, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Mwanga, E.P.; Ngowo, H.S.; Mapua, S.A.; Mmbando, A.S.; Kaindoa, E.W.; Kifungo, K.; Okumu, F.O. Evaluation of an ultraviolet LED trap for catching Anopheles and Culex mosquitoes in south-eastern Tanzania. Parasites Vectors 2019, 12, 418. [Google Scholar] [CrossRef] [Green Version]
- Peach, D.A.H.; Ko, E.; Blake, A.J.; Gries, G. Ultraviolet inflorescence cues enhance attractiveness of inflorescence odour to Culex pipiens mosquitoes. PLoS ONE 2019, 14, e0217484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trap Light Source | Collection Nights | Total Number of Mosquito Species (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ae. aegypti | Ae. albopictus | Ae. pocilius | An. vagus | Ar. subalbatus | Cx. quinquefasciatus | Cx. gelidus | Cx. vishnui | Ma. uniformis | Others * | Total | ||
LED365 | 72 | 3 | 29 | 36 | 16 | 5 | 519 | 183 | 6 | 5 | 18 | 820 (11.8) |
LED375 | 72 | 3 | 35 | 11 | 7 | 6 | 743 | 127 | 0 | 3 | 7 | 942 (13.6) |
LED385 | 72 | 8 | 22 | 17 | 12 | 36 | 576 | 102 | 6 | 5 | 13 | 797 (11.5) |
LED395 | 72 | 2 | 25 | 18 | 14 | 13 | 639 | 132 | 0 | 1 | 10 | 854 (12.3) |
LED405 | 72 | 3 | 29 | 21 | 8 | 5 | 754 | 100 | 3 | 4 | 7 | 934 (13.5) |
Fluorescent | 72 | 4 | 79 | 34 | 13 | 32 | 1890 | 490 | 6 | 10 | 24 | 2582 (37.3) |
Total | 23(0.3) | 219(3.2) | 137(2.0) | 70(1.0) | 97(1.4) | 5121(73.9) | 1134(16.4) | 21(0.3) | 28(0.4) | 79(1.1) | 6929(100) |
Trap Light Source | Collection Nights Dry/Wet | Total (%) Dry/Wet | Mean ± SD * | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|
Dry ** | Wet ** | Dry | Wet | |||||
Lower | Upper | Lower | Upper | |||||
LED365 | 36/36 | 365 (10.1)/ 832 (22.5) | 0.85 ± 0.07 a | 0.95 ± 0.07 a | 0.70 | 1.01 | 0.81 | 1.09 |
LED375 | 36/36 | 480 (13.2)/ 462 (12.5) | 0.09 ± 0.07 a | 0.97 ± 0.06 a | 0.74 | 1.06 | 0.83 | 1.10 |
LED385 | 36/36 | 449 (12.3)/ 348 (9.4) | 0.91 ± 0.07 a | 0.88 ± 0.06 a | 0.76 | 1.06 | 0.76 | 1.00 |
LED395 | 36/36 | 441 (12.1)/ 440 (11.9) | 0.85 ± 0.08 a | 0.92 ± 0.06 a | 0.68 | 1.02 | 0.78 | 1.06 |
LED405 | 36/36 | 562 (15.5)/ 372 (10.1) | 0.97 ± 0.08 a | 0.96 ± 0.04 a | 0.80 | 1.13 | 0.87 | 1.06 |
Fluorescent | 36/36 | 1339 (36.8)/ 1243 (33.6) | 1.40 ± 0.06 a | 1.41 ± 0.05 a | 1.27 | 1.53 | 1.29 | 1.53 |
Trap Light Source | Night Dry/Wet | Total (%) Dry/Wet | Mean ± SD ** | |||
---|---|---|---|---|---|---|
Cx. quinquefasciatus | Cx. gelidus | |||||
Dry * | Wet * | Dry * | Wet * | |||
LED365 | 36/36 | 296 (9.0)/ 406 (13.6) | 7.89 ± 1.44 a | 6.53 ± 1.15 a | 0.33 ± 0.15 a | 4.74 ± 1.05 a |
LED375 | 36/36 | 453 (13.8)/ 417 (14.0) | 12.31 ± 2.82 a | 8.33 ± 1.55 a | 0.28 ± 0.13 a | 3.25 ± 0.65 a |
LED385 | 36/36 | 367 (11.2)/ 311 (10.4) | 9.69 ± 1.98 a | 6.31 ± 1.30 a | 0.50 ± 0.22 a | 2.33 ± 0.40 a |
LED395 | 36/36 | 381 (11.6)/ 390 (13.1) | 10.44 ± 2.07 a | 7.31 ± 1.54 a | 0.14 ± 0.58 a | 3.53 ± 1.05 a |
LED405 | 36/36 | 522 (15.9)/ 332 (11.1) | 14.17 ± 2.93 a | 6.78 ± 0.74 a | 0.33 ± 0.13 a | 2.44 ± 0.57 a |
Fluorescent | 36/36 | 1258 (38.4)/ 1122 (37.7) | 33.92 ± 6.11 b | 18.58 ± 1.77 a | 1.03 ± 0.33 a | 12.58 ± 3.42 b |
Parameter Estimate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | B | Std. Error | 95% Wald Confidence Interval | Hypothesis Test | IRR | 95% Wald Confidence Interval for Exp(B) | ||||
Lower | Upper | Wald Chi-Square | df | Sig. | Lower | Upper | ||||
(Intercept) | 3.611 | 0.1589 | 3.300 | 3.922 | 516.572 | 1 | 0.000 | 37.003 | 27.102 | 50.521 |
LED365 | −1.119 | 0.1720 | −1.456 | −0.782 | 42.309 | 1 | 0.000 | 0.327 | 0.233 | 0.458 |
LED375 | −1.010 | 0.1710 | −1.345 | −0.675 | 34.910 | 1 | 0.000 | 0.364 | 0.260 | 0.509 |
LED385 | −1.181 | 0.1716 | −1.518 | −0.845 | 47.387 | 1 | 0.000 | 0.307 | 0.219 | 0.430 |
LED395 | −1.105 | 0.1714 | −1.441 | −0.769 | 41.598 | 1 | 0.000 | 0.331 | 0.237 | 0.463 |
LED405 | −1.017 | 0.1716 | −1.353 | −0.681 | 35.138 | 1 | 0.000 | 0.362 | 0.258 | 0.506 |
Fluorescent UV | 0 a | 1 | ||||||||
Dry season | 0.076 | 0.1003 | −0.121 | 0.272 | 0.572 | 1 | 0.449 | 1.079 | 0.886 | 1.313 |
Wet season | 0 a | 1 | ||||||||
Night | −0.021 | 0.0283 | −0.077 | 0.034 | 0.570 | 1 | 0.450 | 0.979 | 0.926 | 1.035 |
(Scale) | 1 b | |||||||||
(Negative binomial) | 1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimnon, S.; Ngoen-Klan, R.; Sumarnrote, A.; Chareonviriyaphap, T. UV Light-Emitting-Diode Traps for Collecting Nocturnal Biting Mosquitoes in Urban Bangkok. Insects 2022, 13, 526. https://doi.org/10.3390/insects13060526
Pimnon S, Ngoen-Klan R, Sumarnrote A, Chareonviriyaphap T. UV Light-Emitting-Diode Traps for Collecting Nocturnal Biting Mosquitoes in Urban Bangkok. Insects. 2022; 13(6):526. https://doi.org/10.3390/insects13060526
Chicago/Turabian StylePimnon, Suntorn, Ratchadawan Ngoen-Klan, Anchana Sumarnrote, and Theeraphap Chareonviriyaphap. 2022. "UV Light-Emitting-Diode Traps for Collecting Nocturnal Biting Mosquitoes in Urban Bangkok" Insects 13, no. 6: 526. https://doi.org/10.3390/insects13060526
APA StylePimnon, S., Ngoen-Klan, R., Sumarnrote, A., & Chareonviriyaphap, T. (2022). UV Light-Emitting-Diode Traps for Collecting Nocturnal Biting Mosquitoes in Urban Bangkok. Insects, 13(6), 526. https://doi.org/10.3390/insects13060526