The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Drosophila Cultures
2.2. Yeast Cultures
2.3. Laboratory Jar Bioassay
2.4. Statistical Analysis
3. Results
3.1. Summer-Morph Mortality of D. suzukii
3.2. Winter-Morph Mortality of D. suzukii
3.3. Differences in Mortality between D. suzukii Winter- and Summer-Morphs
3.4. Median Lethal Time (Time until Death) of 50% (LT50) of Summer-Morph D. suzukii to Insecticides Combined with Phagostimulant Baits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolda, M.P.; Goodhue, R.E.; Zalom, F.G. Spotted wing drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Update 2010, 13, 5–8. [Google Scholar]
- Calabria, G.; Máca, J.; Bächli, G.; Serra, L.; Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Èntomol. 2010, 136, 139–147. [Google Scholar] [CrossRef]
- Harris, A.; Shaw, B. First record of Drosophila suzukii (Matsumura) (Diptera, Drosophilidae) in Great Britain. Dipter. Dig. 2014, 21, 189–192. [Google Scholar]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ros, G.; Grassi, A.; Pantezzi, T. Recent Trends in the Economic Impact of Drosophila suzukii. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 11–27. [Google Scholar]
- Wallingford, A.K.; Loeb, G.M. Developmental Acclimation of Drosophila suzukii (Diptera: Drosophilidae) and Its Effect on Diapause and Winter Stress Tolerance. Environ. Èntomol. 2016, 45, 1081–1089. [Google Scholar] [CrossRef]
- Shearer, P.W.; West, J.D.; Walton, V.M.; Brown, P.H.; Svetec, N.; Chiu, J.C. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 2016, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Leach, H.; Stone, J.; Van Timmeren, S.; Isaacs, R. Stage-Specific and Seasonal Induction of the Overwintering Morph of Spotted Wing Drosophila (Diptera: Drosophilidae). J. Insect Sci. 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Panel, A.; Zeeman, L.; Van Der Sluis, B.; Van Elk, P.; Pannebakker, B.; Wertheim, B.; Helsen, H. Overwintered Drosophila suzukii Are the Main Source for Infestations of the First Fruit Crops of the Season. Insects 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Stockton, D.; Wallingford, A.; Rendon, D.; Fanning, P.; Green, C.K.; Diepenbrock, L.; Ballman, E.; Walton, V.M.; Isaacs, R.; Leach, H.; et al. Interactions Between Biotic and Abiotic Factors Affect Survival in Overwintering Drosophila suzukii (Diptera: Drosophilidae). Environ. Èntomol. 2019, 48, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Zerulla, F.N.; Schmidt, S.; Streitberger, M.; Zebitz, C.P.W.; Zelger, R. On the overwintering ability of Drosophila suzukii in South Tyrol. J. Berry Res. 2015, 5, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Buck, N.; Fountain, M.T.; Potts, S.G.; Bishop, J.; Garratt, M.P.D. The effects of non-crop habitat on spotted wing drosophila (Drosophila suzukii) abundance in fruit systems: A meta-analysis. Agric. For. Èntomol. 2022, 1–11. [Google Scholar] [CrossRef]
- Shawer, R. Chemical Control of Drosophila suzukii. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–142. [Google Scholar]
- Shawer, R.; Tonina, L.; Tirello, P.; Duso, C.; Mori, N. Laboratory and field trials to identify effective chemical control strategies for integrated management of Drosophila suzukii in European cherry orchards. Crop Prot. 2018, 103, 73–80. [Google Scholar] [CrossRef]
- Leach, H.; Moses, J.; Hanson, E.; Fanning, P.; Isaacs, R. Rapid harvest schedules and fruit removal as non-chemical approaches for managing spotted wing Drosophila. J. Pest Sci. 2017, 91, 219–226. [Google Scholar] [CrossRef]
- Alnajjar, G.; Collins, J.; Drummond, F.A. Behavioral and preventative management of Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Maine wild blueberry (Vaccinium angustifolium Aiton) through attract and kill trapping and insect exclusion-netting. Int. J. Entomol. Nematol. 2017, 3, 51–61. [Google Scholar]
- Schöneberg, T.; Arsenault-Benoit, A.; Taylor, C.M.; Butler, B.R.; Dalton, D.T.; Walton, V.M.; Petran, A.; Rogers, M.; Diepenbrock, L.M.; Burrack, H.; et al. Pruning of small fruit crops can affect habitat suitability for Drosophila suzukii. Agric. Ecosyst. Environ. 2020, 294, 106860. [Google Scholar] [CrossRef]
- Wang, X.; Daane, K.M.; Hoelmer, K.A.; Lee, J.C. Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–167. [Google Scholar]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 2018, 75, 1270–1276. [Google Scholar] [CrossRef]
- Civolani, S.; Vaccari, G.; Caruso, S.; Finetti, L.; Bernacchia, G.; Chicca, M.; Cassanelli, S. Evaluation of insecticide efficacy and insecticide adaptive response in Italian populations of Drosophila suzukii. Bull. Insectology 2021, 74, 103–114. [Google Scholar]
- Hamby, K.A.; Becher, P.G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 2016, 89, 621–630. [Google Scholar] [CrossRef]
- Mori, B.A.; Whitener, A.B.; Leinweber, Y.; Revadi, S.; Beers, E.H.; Witzgall, P.; Becher, P.G. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 2016, 54, 170–177. [Google Scholar] [CrossRef]
- Knight, A.L.; Basoalto, E.; Yee, W.; Hilton, R.; Kurtzman, C.P. Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry. Pest Manag. Sci. 2015, 72, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Dobrovin-Pennington, A.; Phillips, A.; Cannon, M.F.; Shaw, B.; Fountain, M.T. Improved insecticidal control of spotted wing drosophila (Drosophila suzukii) using yeast and fermented strawberry juice baits. Crop Prot. 2019, 125, 104902. [Google Scholar] [CrossRef]
- Bianchi, F.; Spitaler, U.; Castellan, I.; Cossu, C.S.; Brigadoi, T.; Duménil, C.; Angeli, S.; Robatscher, P.; Vogel, R.F.; Schmidt, S.; et al. Persistence of a Yeast-Based (Hanseniaspora Uvarum) Attract-and-Kill Formulation against Drosophila Suzukii on Grape Leaves. Insects 2020, 11, 810. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Walker, A.; Whitfield, C.; Harris, A.; Dobrovin-Pennington, A.; Fountain, M.T. Minimizing insecticides for control of spotted wing drosophila (Drosophila suzukii) in soft fruit using bait sprays. J. Appl. Èntomol. 2021, 145, 977–985. [Google Scholar] [CrossRef]
- Rehermann, G.; Spitaler, U.; Sahle, K.; Cossu, C.S.; Donne, L.D.; Bianchi, F.; Eisenstecken, D.; Angeli, S.; Schmidt, S.; Becher, P.G. Behavioral manipulation of Drosophila suzukii for pest control: High attraction to yeast enhances insecticide efficacy when applied on leaves. Pest Manag. Sci. 2021, 78, 896–904. [Google Scholar] [CrossRef]
- Noble, R.; Shaw, B.; Walker, A.; Whitfield, E.C.; Deakin, G.; Harris, A.; Dobrovin-Pennington, A.; Fountain, M.T. Control of spotted wing drosophila (Drosophila suzukii) in sweet cherry and raspberry using bait sprays. J. Pest Sci. 2022. [Google Scholar] [CrossRef]
- Clymans, R.; Van Kerckvoorde, V.; Bangels, E.; Akkermans, W.; Alhmedi, A.; De Clercq, P.; Beliën, T.; Bylemans, D. Olfactory Preference of Drosophila suzukii Shifts between Fruit and Fermentation Cues over the Season: Effects of Physiological Status. Insects 2019, 10, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, D.M.; Leach, H.L.; Xu, P.; Dong, K.; Isaacs, R.; Gut, L.J. Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Environ. Èntomol. 2018, 47, 700–706. [Google Scholar] [CrossRef]
- Fountain, M.T.; Bennett, J.; Cobo-Medina, M.; Ruiz, R.C.; Deakin, G.; Delgado, A.; Harrison, R.; Harrison, N. Alimentary microbes of winter-form Drosophila suzukii. Insect Mol. Biol. 2018, 27, 383–392. [Google Scholar] [CrossRef]
- Wong, J.S.; Wallingford, A.K.; Loeb, G.M.; Lee, J.C. Physiological status of Drosophila suzukii (Diptera: Drosophilidae) affects their response to attractive odours. J. Appl. Èntomol. 2018, 142, 473–482. [Google Scholar] [CrossRef]
- Jones, R. The Use of Attractive Yeast Species for Controlling Drosophila suzukii (Spotted Wing Drosophila). Ph.D. Thesis, University of Lincoln, Lincoln, UK, 2022. [Google Scholar]
- Scheidler, N.H.; Liu, C.; Hamby, K.A.; Zalom, F.G.; Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 2015, 5, 14059. [Google Scholar] [CrossRef] [Green Version]
- Lasa, R.; Navarro-De-La-Fuente, L.; Gschaedler-Mathis, A.C.; Kirchmayr, M.R.; Williams, T. Yeast Species, Strains, and Growth Media Mediate Attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 2019, 10, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.; Fountain, M.T.; Günther, C.S.; Eady, P.E.; Goddard, M.R. Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci. Rep. 2021, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Bueno, E.; Martin, K.R.; Raguso, R.A.; Mcmullen, J.G.; Hesler, S.P.; Loeb, G.M.; Douglas, A.E. Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles. J. Chem. Ecol. 2019, 46, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Erdei, A.L.; Szelényi, M.O.; Deutsch, F.; Rikk, P.; Molnár, B.P. Lure design for Drosophila suzukii based on liquid culture of fruit epiphytic yeasts: Comparing the attractivity of fermentation volatiles for seasonal morphs. J. Appl. Èntomol. 2022, 146, 773–785. [Google Scholar] [CrossRef]
- Hamby, K.A.; Hernández, A.; Boundy-Mills, K.; Zalom, F.G. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries. Appl. Environ. Microbiol. 2012, 78, 4869–4873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelfattah, A.; Wisniewski, M.; Nicosia, M.G.L.D.; Cacciola, S.O.; Schena, L. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs. PLoS ONE 2016, 11, e0160470. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Fountain, M.T.; Andreani, N.A.; Günther, C.S.; Goddard, M.R. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci. Rep. 2022, 12, 10382. [Google Scholar] [CrossRef]
- O’Gorman, D.T.; Haag, P.; Boulé, J.; Healy, G.; Fraser, J.; Walker, M.; Úrbez-Torres, J.R. Microbial communities of sweet cherry (Prunus avium L.) and assessment of their association with cherry slip-skin-maceration disorder. Can. J. Plant Pathol. 2022, 1–13. [Google Scholar] [CrossRef]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Fischer, C.N.; Trautman, E.P.; Crawford, J.M.; Stabb, E.V.; Handelsman, J.; Broderick, N.A. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 2017, 6, e18855. [Google Scholar] [CrossRef]
- Shaw, B.; Brain, P.; Wijnen, H.; Fountain, M.T. Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 2018, 74, 1466–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungadi, T.D.; Shaw, B.; Powell, G.; Hall, D.R.; Bray, D.P.; Harte, S.J.; Farman, D.I.; Wijnen, H.; Fountain, M.T. Live Drosophila melanogaster Larvae Deter Oviposition by Drosophila suzukii. Insects 2022, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Dederichs, U. Using the bait spray method to control the spotted-wing drosophila. Eur. Fruit Mag. 2015, 6–9. [Google Scholar]
- Chandasir, N.; Babu, A.; Sial, A.A. Comparing the Efficacy of Entrust SC Mixed With and Without a Novel Adjuvant, Combi-Protec, Against Spotted-Wing Drosophila in Blueberries, 2021. Arthropod Manag. Tests 2022, 47, tsac096. [Google Scholar] [CrossRef]
- Babu, A.; Adhikari, R.; Sial, A.A. Evaluating Entrust 2SC Added With the Adjuvant Combi-Protec in Managing Spotted-Wing Drosophila in Blueberries, 2021. Arthropod Manag. Tests 2022, 47, tsac095. [Google Scholar] [CrossRef]
- Knight, A.; Yee, W.; Hilton, R. Developing a new bait for spotted-wing drosophila in organic cherry production. Acta Hortic. 2013, 1001, 147–152. [Google Scholar] [CrossRef]
- Fanning, P.; Lanka, S.; Mermer, S.; Collins, J.; Van Timmeren, S.; Andrews, H.; Hesler, S.; Loeb, G.; Drummond, F.; Wiman, N.G.; et al. Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, Drosophila suzukii (Matsumura). J. Econ. Èntomol. 2021, 114, 1638–1646. [Google Scholar] [CrossRef]
- Babu, A.; Rodriguez-Saona, C.; Sial, A.A. Factors Influencing the Efficacy of Novel Attract-and-Kill (ACTTRA SWD) Formulations Against Drosophila suzukii. J. Econ. Èntomol. 2022, 115, 981–989. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc. 2015, 128, 28–33. [Google Scholar]
- Kassambara, A.; Kosinski, M.; Biecek, P.; Fabian, S. Drawing Survival Curves using ‘ggplot2’. (R package version 0.3.1.). In Package ‘Survminer’; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.3.2. R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, P.; Yi, C.; Zhang, Q.; Zhang, H.; Lin, J.; Song, X.; Yang, J.; Wang, B.; Ji, Q.; Chen, J. Evaluation of Protein Bait Manufactured From Brewery Yeast Waste for Controlling Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Èntomol. 2018, 112, 226–235. [Google Scholar] [CrossRef] [PubMed]
Treatment | Positive/Negative Control | Summer-Morph Experiments | Winter-Morph Experiments |
---|---|---|---|
Hanseniaspora uvarum | - | X | X |
Metschnikowia pulcherrima | - | X | |
Candida zemplininia | - | X | X |
M. pulcherrima + H. uvarum | - | X | |
H. uvarum + C. zemplininia | - | X | X |
Water | Negative | X | |
Water | Positive | X | |
YPD media | Negative | X | X |
YPD media | Positive | X | |
Combi-protec | Positive | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.; Eady, P.E.; Goddard, M.R.; Fountain, M.T. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects 2022, 13, 995. https://doi.org/10.3390/insects13110995
Jones R, Eady PE, Goddard MR, Fountain MT. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects. 2022; 13(11):995. https://doi.org/10.3390/insects13110995
Chicago/Turabian StyleJones, Rory, Paul E. Eady, Matthew R. Goddard, and Michelle T. Fountain. 2022. "The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii" Insects 13, no. 11: 995. https://doi.org/10.3390/insects13110995
APA StyleJones, R., Eady, P. E., Goddard, M. R., & Fountain, M. T. (2022). The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects, 13(11), 995. https://doi.org/10.3390/insects13110995