Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,824)

Search Parameters:
Keywords = integrated pest management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3000 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

28 pages, 346 KiB  
Review
Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States
by Sushil Grewal and Debalina Saha
Horticulturae 2025, 11(8), 926; https://doi.org/10.3390/horticulturae11080926 - 6 Aug 2025
Abstract
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed [...] Read more.
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed infestations, herbicide resistance development, and the limited availability of selective herbicides for ornamental crops in the United States. This review synthesizes current chemical weed control tactics, focusing not only on both preemergence and postemergence herbicides commonly used in ornamental nurseries, but also organic alternatives and integrated weed management (IWM) approaches as complementary strategies by evaluating their effectiveness, crop safety, and usage. There is a critical need for research in the areas of alternative chemical options such as insecticides, miticides (e.g., Zerotol and Tetra Curb Max), and organic products for liverwort control in greenhouses. Although essential oils and plant-based extracts show some potential, their effectiveness and practical use remain largely unexplored. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Graphical abstract

26 pages, 3619 KiB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 360
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

18 pages, 957 KiB  
Article
Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes
by Marcello De Giosa, Adam G. Dale, Xingbo Wu and Alexandra M. Revynthi
Insects 2025, 16(8), 801; https://doi.org/10.3390/insects16080801 - 2 Aug 2025
Viewed by 293
Abstract
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric [...] Read more.
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric acid, potassium salt of fatty acids, garlic, thyme, and mineral oil) and conventional (abamectin, fenpyroximate, bifenthrin, spiromesifen) pesticides under laboratory conditions, using two types of spray applications: (A) curative, after erinea formation, and (B) prophylactic, before erinea formation. In the curative application, abamectin, garlic oil, and mineral oil were most effective; in the prophylactic application, abamectin and mineral oil showed the highest efficacies. Abamectin and mineral oil were further tested under greenhouse conditions. Both treatments effectively controlled A. simplex by preventing erinea formation over a four-week post-application period, regardless of the application type. At the end of the experiment, mites were extracted from R. simplex plants. In the curative application, significantly fewer mites were extracted from abamectin and mineral oil treatments than in the control. In the prophylactic application, mites were absent in abamectin and mineral oil treatments but present in the control. Abamectin and mineral oil can be used to manage A. simplex in landscapes. Full article
(This article belongs to the Special Issue Advances in the Bio-Ecology and Control of Plant-Damaging Acari)
Show Figures

Figure 1

21 pages, 2600 KiB  
Article
Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
by Chuantong Cui, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang and Li-Jun Huang
Plants 2025, 14(15), 2382; https://doi.org/10.3390/plants14152382 - 2 Aug 2025
Viewed by 312
Abstract
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based [...] Read more.
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based biochar (Bc) under OBZ stress. We systematically analyzed physiological and biochemical responses, including phenotypic parameters, reactive oxygen species metabolism, photosynthetic function, chlorophyll synthesis, and endogenous hormone levels. Results reveal that OBZ significantly inhibited tobacco growth and triggered a reactive oxygen species (ROS) burst. Additionally, OBZ disrupted antioxidant enzyme activities and hormonal balance. Exogenous Bc mitigated OBZ toxicity by adsorbing OBZ, directly scavenging ROS, and restoring the ascorbate-glutathione (AsA-GSH) cycle, thereby enhancing photosynthetic efficiency, while Si alleviated stress via cell wall silicification, preferential regulation of root development and hormonal signaling, and repair of chlorophyll biosynthesis precursor metabolism and PSII function. The mechanisms of the two stress mitigators were complementary, Bc primarily relied on physical adsorption and ROS scavenging, whereas Si emphasized metabolic regulation and structural reinforcement. These findings provide practical strategies for simultaneously mitigating organic UV filter pollution and enhancing plant resilience in contaminated soils. Full article
Show Figures

Figure 1

15 pages, 1194 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 - 1 Aug 2025
Viewed by 145
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 5630 KiB  
Article
Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda
by Ya-Nan Deng, Jin-Yan Lv, Xiao-Rong Liu, Dan Niu, Ling-Xin Xu and Jun-Xin Yan
Biology 2025, 14(8), 979; https://doi.org/10.3390/biology14080979 - 1 Aug 2025
Viewed by 174
Abstract
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the [...] Read more.
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the ecofriendly control of S. frugiperda. In this study, S. frugiperda larvae were exposed to vanillic acid or sinapic acid at the second and third instar, and physiological and growth parameters were measured. The results showed that the effects of vanillic acid treatment on S. frugiperda were similar at the different instars. They can significantly affect the larval carboxylesterase, glutathione S-transferase, and mixed-function oxidase activities. By reducing larval food intake, food conversion, and utilization efficiency while increasing the food consumption rate, it inhibits weight accumulation. This leads to a significant extension of the development of both the larval and pupal stages, and the adult longevity was reduced. Treatment with sinapic acid at the second instar extended the negative effects on the pupal duration of S. frugiperda when compared to treatment at the third instar, but did not affect adult longevity. Therefore, vanillic acid treatment at the second or third instar stage, can play an important role in the ecofriendly control process of S. frugiperda. The results of this study are of great significance for integrated pest management. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 - 31 Jul 2025
Viewed by 451
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 326
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 - 31 Jul 2025
Viewed by 344
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

14 pages, 1546 KiB  
Article
Using Leaf-Derived Materials to Stop Common Bed Bugs (Cimex lectularius L.) in Their Tracks
by Patrick Liu, Jorge Bustamante, Kathleen Campbell, Andrew M. Sutherland, Dong-Hwan Choe and Catherine Loudon
Insects 2025, 16(8), 786; https://doi.org/10.3390/insects16080786 - 31 Jul 2025
Viewed by 247
Abstract
The common bed bug, Cimex lectularius L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control. Leaves from common bean [...] Read more.
The common bed bug, Cimex lectularius L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control. Leaves from common bean plants, Phaseolus vulgaris L., which include numerous trichomes, have traditionally been used to capture wandering bed bugs in southeastern Europe. However, fresh leaves rapidly desiccate once removed from plants, losing their trapping ability. A leaf-derived trapping material was developed that does not desiccate as rapidly as fresh leaves and retains the potential to trap bed bugs. In this study, we tested the efficacy of the leaf-derived material in capturing bed bugs. We tested the leaf-derived material in both horizontal and vertical orientations, using fresh bean leaves as positive controls. When deployed horizontally, the leaf-derived material captured bed bugs of all life stages and both sexes (adults). Leaf-derived material was also found to capture bed bugs in a vertical orientation (only evaluated for adult male bed bugs). Because this experimental leaf-derived material was effective in both horizontal and vertical orientations and against all life stages, it may have great potential for development into bed bug monitoring or exclusion devices. Full article
Show Figures

Figure 1

13 pages, 3231 KiB  
Article
Comparative Analyses Reveal Mitogenome Characteristics of Halictidae and Novel Rearrangement (Hymenoptera: Apoidea: Anthophila)
by Dan Zhang and Zeqing Niu
Animals 2025, 15(15), 2234; https://doi.org/10.3390/ani15152234 - 30 Jul 2025
Viewed by 236
Abstract
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three [...] Read more.
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three species of Nomiinae and one species of Rophitinae. We analyzed the characters of the newly obtained mitogenomes, including nucleotide composition, sequence length, and gene rearrangements. The length of the newly sequenced mitogenomes ranged from 16,492 to 21,192 bp, and all newly obtained mitogenomes contained 22 tRNAs, 13 protein-coding genes, two rRNAs, and one control region. Their AT content (%) ranged from 82.55 to 86.44. Relative synonymous codon usage analysis showed that UUU, UUA, and AUU were the preferred codons. The relative synonymous codon usage > 2 of mostly newly sequenced species was as follows: UUA > UCA > CGA. All newly obtained mitogenomes show gene rearrangement; we found five gene rearrangement patterns in total. Notably, ND4-trnP-ND4L-trnT was the first reported gene rearrangement pattern in bees. In addition, we reconstructed the phylogenetic relationships of Halictidae based on 10 species (eight ingroups and two outgroups), using Bayesian Inference and Maximum Likelihood approaches. Phylogenetic analysis showed that Rophitinae was the basal group within Halictidae. Full article
Show Figures

Figure 1

13 pages, 239 KiB  
Article
In Vitro Detection of Acaricide Resistance in Hyalomma Species Ticks with Emphasis on Farm Management Practices Associated with Acaricide Resistance in Abu Dhabi, United Arab Emirates
by Shameem Habeeba, Yasser Mahmmod, Hany Mohammed, Hashel Amer, Mohamed Moustafa, Assem Sobhi, Mohamed El-Sokary, Mahmoud Hussein, Ameer Tolba, Zulaikha Al Hammadi, Mohd Al Breiki and Asma Mohamed Shah
Vet. Sci. 2025, 12(8), 712; https://doi.org/10.3390/vetsci12080712 - 29 Jul 2025
Viewed by 311
Abstract
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for [...] Read more.
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for this study. The objectives of this research were as follows: (a) to assess the acaricide resistance status of the most prevalent tick Hyalomma spp. to widely used acaricides Cypermethrin and Deltamethrin; (b) to identify the association of farm management practices and farm-level risk factors with the failure of tick treatment (acaracide resistance). A total of 1600 ticks were collected from 20 farms located in three different regions of Abu Dhabi Emirate including Al Ain (n = 10), Al Dhafra (n = 5), and Abu Dhabi (n = 5). The ticks were subjected to an in vitro bioassay adult immersion test (AIT) modified with a discriminating dose (AIT-DD) against commercial preparations of Cypermethrin and Deltamethrin. A questionnaire was designed to collect metadata and information on farm management and the farm-level risk factors associated with routine farm practices relating to the treatment and control of tick and blood parasite infections in camels and small ruminant populations. Hyalomma anatolicum and Hyalomma dromedarii were identified among the collected ticks, with H. anatolicum being the most prevalent tick species (70%) in the present study. The test results of the in vitro bioassay revealed varied emerging resistance to both of the acaricides in the majority of the three regions; fully susceptible tick isolates with zero resistance to Deltamethrin were recorded in one farm at Al Ain and two farms in the Abu Dhabi region. A questionnaire analysis showed that the failure of tick treatment in farms varied with the presence or absence of vegetation areas, types of animal breeds, and management practices. This study reports the emergence of resistance in ticks to Cypermethrin and Deltamethrin across the Abu Dhabi Emirate, indicating a strict warning for the cautious use of acaricides. There is also a need to improve awareness about sound tick management and control practices among farm owners through a multidisciplinary approach adopting integrated pest management strategies that engage farmers, veterinarians, and policy makers. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
Back to TopTop