The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Drosophila Cultures
2.2. Yeast Cultures
2.3. Laboratory Jar Bioassay
2.4. Statistical Analysis
3. Results
3.1. Summer-Morph Mortality of D. suzukii
3.2. Winter-Morph Mortality of D. suzukii
3.3. Differences in Mortality between D. suzukii Winter- and Summer-Morphs
3.4. Median Lethal Time (Time until Death) of 50% (LT50) of Summer-Morph D. suzukii to Insecticides Combined with Phagostimulant Baits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolda, M.P.; Goodhue, R.E.; Zalom, F.G. Spotted wing drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Update 2010, 13, 5–8. [Google Scholar]
- Calabria, G.; Máca, J.; Bächli, G.; Serra, L.; Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Èntomol. 2010, 136, 139–147. [Google Scholar] [CrossRef]
- Harris, A.; Shaw, B. First record of Drosophila suzukii (Matsumura) (Diptera, Drosophilidae) in Great Britain. Dipter. Dig. 2014, 21, 189–192. [Google Scholar]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132840. [Google Scholar] [CrossRef] [PubMed]
- De Ros, G.; Grassi, A.; Pantezzi, T. Recent Trends in the Economic Impact of Drosophila suzukii. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 11–27. [Google Scholar]
- Wallingford, A.K.; Loeb, G.M. Developmental Acclimation of Drosophila suzukii (Diptera: Drosophilidae) and Its Effect on Diapause and Winter Stress Tolerance. Environ. Èntomol. 2016, 45, 1081–1089. [Google Scholar] [CrossRef]
- Shearer, P.W.; West, J.D.; Walton, V.M.; Brown, P.H.; Svetec, N.; Chiu, J.C. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 2016, 16, 11. [Google Scholar] [CrossRef]
- Leach, H.; Stone, J.; Van Timmeren, S.; Isaacs, R. Stage-Specific and Seasonal Induction of the Overwintering Morph of Spotted Wing Drosophila (Diptera: Drosophilidae). J. Insect Sci. 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Panel, A.; Zeeman, L.; Van Der Sluis, B.; Van Elk, P.; Pannebakker, B.; Wertheim, B.; Helsen, H. Overwintered Drosophila suzukii Are the Main Source for Infestations of the First Fruit Crops of the Season. Insects 2018, 9, 145. [Google Scholar] [CrossRef]
- Stockton, D.; Wallingford, A.; Rendon, D.; Fanning, P.; Green, C.K.; Diepenbrock, L.; Ballman, E.; Walton, V.M.; Isaacs, R.; Leach, H.; et al. Interactions Between Biotic and Abiotic Factors Affect Survival in Overwintering Drosophila suzukii (Diptera: Drosophilidae). Environ. Èntomol. 2019, 48, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Zerulla, F.N.; Schmidt, S.; Streitberger, M.; Zebitz, C.P.W.; Zelger, R. On the overwintering ability of Drosophila suzukii in South Tyrol. J. Berry Res. 2015, 5, 41–48. [Google Scholar] [CrossRef]
- Buck, N.; Fountain, M.T.; Potts, S.G.; Bishop, J.; Garratt, M.P.D. The effects of non-crop habitat on spotted wing drosophila (Drosophila suzukii) abundance in fruit systems: A meta-analysis. Agric. For. Èntomol. 2022, 1–11. [Google Scholar] [CrossRef]
- Shawer, R. Chemical Control of Drosophila suzukii. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–142. [Google Scholar]
- Shawer, R.; Tonina, L.; Tirello, P.; Duso, C.; Mori, N. Laboratory and field trials to identify effective chemical control strategies for integrated management of Drosophila suzukii in European cherry orchards. Crop Prot. 2018, 103, 73–80. [Google Scholar] [CrossRef]
- Leach, H.; Moses, J.; Hanson, E.; Fanning, P.; Isaacs, R. Rapid harvest schedules and fruit removal as non-chemical approaches for managing spotted wing Drosophila. J. Pest Sci. 2017, 91, 219–226. [Google Scholar] [CrossRef]
- Alnajjar, G.; Collins, J.; Drummond, F.A. Behavioral and preventative management of Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Maine wild blueberry (Vaccinium angustifolium Aiton) through attract and kill trapping and insect exclusion-netting. Int. J. Entomol. Nematol. 2017, 3, 51–61. [Google Scholar]
- Schöneberg, T.; Arsenault-Benoit, A.; Taylor, C.M.; Butler, B.R.; Dalton, D.T.; Walton, V.M.; Petran, A.; Rogers, M.; Diepenbrock, L.M.; Burrack, H.; et al. Pruning of small fruit crops can affect habitat suitability for Drosophila suzukii. Agric. Ecosyst. Environ. 2020, 294, 106860. [Google Scholar] [CrossRef]
- Wang, X.; Daane, K.M.; Hoelmer, K.A.; Lee, J.C. Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents; Garcia, F.R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–167. [Google Scholar]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 2018, 75, 1270–1276. [Google Scholar] [CrossRef]
- Civolani, S.; Vaccari, G.; Caruso, S.; Finetti, L.; Bernacchia, G.; Chicca, M.; Cassanelli, S. Evaluation of insecticide efficacy and insecticide adaptive response in Italian populations of Drosophila suzukii. Bull. Insectology 2021, 74, 103–114. [Google Scholar]
- Hamby, K.A.; Becher, P.G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 2016, 89, 621–630. [Google Scholar] [CrossRef]
- Mori, B.A.; Whitener, A.B.; Leinweber, Y.; Revadi, S.; Beers, E.H.; Witzgall, P.; Becher, P.G. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 2016, 54, 170–177. [Google Scholar] [CrossRef]
- Knight, A.L.; Basoalto, E.; Yee, W.; Hilton, R.; Kurtzman, C.P. Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry. Pest Manag. Sci. 2015, 72, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Dobrovin-Pennington, A.; Phillips, A.; Cannon, M.F.; Shaw, B.; Fountain, M.T. Improved insecticidal control of spotted wing drosophila (Drosophila suzukii) using yeast and fermented strawberry juice baits. Crop Prot. 2019, 125, 104902. [Google Scholar] [CrossRef]
- Bianchi, F.; Spitaler, U.; Castellan, I.; Cossu, C.S.; Brigadoi, T.; Duménil, C.; Angeli, S.; Robatscher, P.; Vogel, R.F.; Schmidt, S.; et al. Persistence of a Yeast-Based (Hanseniaspora Uvarum) Attract-and-Kill Formulation against Drosophila Suzukii on Grape Leaves. Insects 2020, 11, 810. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Walker, A.; Whitfield, C.; Harris, A.; Dobrovin-Pennington, A.; Fountain, M.T. Minimizing insecticides for control of spotted wing drosophila (Drosophila suzukii) in soft fruit using bait sprays. J. Appl. Èntomol. 2021, 145, 977–985. [Google Scholar] [CrossRef]
- Rehermann, G.; Spitaler, U.; Sahle, K.; Cossu, C.S.; Donne, L.D.; Bianchi, F.; Eisenstecken, D.; Angeli, S.; Schmidt, S.; Becher, P.G. Behavioral manipulation of Drosophila suzukii for pest control: High attraction to yeast enhances insecticide efficacy when applied on leaves. Pest Manag. Sci. 2021, 78, 896–904. [Google Scholar] [CrossRef]
- Noble, R.; Shaw, B.; Walker, A.; Whitfield, E.C.; Deakin, G.; Harris, A.; Dobrovin-Pennington, A.; Fountain, M.T. Control of spotted wing drosophila (Drosophila suzukii) in sweet cherry and raspberry using bait sprays. J. Pest Sci. 2022. [Google Scholar] [CrossRef]
- Clymans, R.; Van Kerckvoorde, V.; Bangels, E.; Akkermans, W.; Alhmedi, A.; De Clercq, P.; Beliën, T.; Bylemans, D. Olfactory Preference of Drosophila suzukii Shifts between Fruit and Fermentation Cues over the Season: Effects of Physiological Status. Insects 2019, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, D.M.; Leach, H.L.; Xu, P.; Dong, K.; Isaacs, R.; Gut, L.J. Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Environ. Èntomol. 2018, 47, 700–706. [Google Scholar] [CrossRef]
- Fountain, M.T.; Bennett, J.; Cobo-Medina, M.; Ruiz, R.C.; Deakin, G.; Delgado, A.; Harrison, R.; Harrison, N. Alimentary microbes of winter-form Drosophila suzukii. Insect Mol. Biol. 2018, 27, 383–392. [Google Scholar] [CrossRef]
- Wong, J.S.; Wallingford, A.K.; Loeb, G.M.; Lee, J.C. Physiological status of Drosophila suzukii (Diptera: Drosophilidae) affects their response to attractive odours. J. Appl. Èntomol. 2018, 142, 473–482. [Google Scholar] [CrossRef]
- Jones, R. The Use of Attractive Yeast Species for Controlling Drosophila suzukii (Spotted Wing Drosophila). Ph.D. Thesis, University of Lincoln, Lincoln, UK, 2022. [Google Scholar]
- Scheidler, N.H.; Liu, C.; Hamby, K.A.; Zalom, F.G.; Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 2015, 5, 14059. [Google Scholar] [CrossRef]
- Lasa, R.; Navarro-De-La-Fuente, L.; Gschaedler-Mathis, A.C.; Kirchmayr, M.R.; Williams, T. Yeast Species, Strains, and Growth Media Mediate Attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 2019, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Fountain, M.T.; Günther, C.S.; Eady, P.E.; Goddard, M.R. Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci. Rep. 2021, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Bueno, E.; Martin, K.R.; Raguso, R.A.; Mcmullen, J.G.; Hesler, S.P.; Loeb, G.M.; Douglas, A.E. Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles. J. Chem. Ecol. 2019, 46, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Erdei, A.L.; Szelényi, M.O.; Deutsch, F.; Rikk, P.; Molnár, B.P. Lure design for Drosophila suzukii based on liquid culture of fruit epiphytic yeasts: Comparing the attractivity of fermentation volatiles for seasonal morphs. J. Appl. Èntomol. 2022, 146, 773–785. [Google Scholar] [CrossRef]
- Hamby, K.A.; Hernández, A.; Boundy-Mills, K.; Zalom, F.G. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries. Appl. Environ. Microbiol. 2012, 78, 4869–4873. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, A.; Wisniewski, M.; Nicosia, M.G.L.D.; Cacciola, S.O.; Schena, L. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs. PLoS ONE 2016, 11, e0160470. [Google Scholar] [CrossRef]
- Jones, R.; Fountain, M.T.; Andreani, N.A.; Günther, C.S.; Goddard, M.R. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci. Rep. 2022, 12, 10382. [Google Scholar] [CrossRef]
- O’Gorman, D.T.; Haag, P.; Boulé, J.; Healy, G.; Fraser, J.; Walker, M.; Úrbez-Torres, J.R. Microbial communities of sweet cherry (Prunus avium L.) and assessment of their association with cherry slip-skin-maceration disorder. Can. J. Plant Pathol. 2022, 1–13. [Google Scholar] [CrossRef]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Fischer, C.N.; Trautman, E.P.; Crawford, J.M.; Stabb, E.V.; Handelsman, J.; Broderick, N.A. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 2017, 6, e18855. [Google Scholar] [CrossRef]
- Shaw, B.; Brain, P.; Wijnen, H.; Fountain, M.T. Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 2018, 74, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Tungadi, T.D.; Shaw, B.; Powell, G.; Hall, D.R.; Bray, D.P.; Harte, S.J.; Farman, D.I.; Wijnen, H.; Fountain, M.T. Live Drosophila melanogaster Larvae Deter Oviposition by Drosophila suzukii. Insects 2022, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Dederichs, U. Using the bait spray method to control the spotted-wing drosophila. Eur. Fruit Mag. 2015, 6–9. [Google Scholar]
- Chandasir, N.; Babu, A.; Sial, A.A. Comparing the Efficacy of Entrust SC Mixed With and Without a Novel Adjuvant, Combi-Protec, Against Spotted-Wing Drosophila in Blueberries, 2021. Arthropod Manag. Tests 2022, 47, tsac096. [Google Scholar] [CrossRef]
- Babu, A.; Adhikari, R.; Sial, A.A. Evaluating Entrust 2SC Added With the Adjuvant Combi-Protec in Managing Spotted-Wing Drosophila in Blueberries, 2021. Arthropod Manag. Tests 2022, 47, tsac095. [Google Scholar] [CrossRef]
- Knight, A.; Yee, W.; Hilton, R. Developing a new bait for spotted-wing drosophila in organic cherry production. Acta Hortic. 2013, 1001, 147–152. [Google Scholar] [CrossRef]
- Fanning, P.; Lanka, S.; Mermer, S.; Collins, J.; Van Timmeren, S.; Andrews, H.; Hesler, S.; Loeb, G.; Drummond, F.; Wiman, N.G.; et al. Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, Drosophila suzukii (Matsumura). J. Econ. Èntomol. 2021, 114, 1638–1646. [Google Scholar] [CrossRef]
- Babu, A.; Rodriguez-Saona, C.; Sial, A.A. Factors Influencing the Efficacy of Novel Attract-and-Kill (ACTTRA SWD) Formulations Against Drosophila suzukii. J. Econ. Èntomol. 2022, 115, 981–989. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc. 2015, 128, 28–33. [Google Scholar]
- Kassambara, A.; Kosinski, M.; Biecek, P.; Fabian, S. Drawing Survival Curves using ‘ggplot2’. (R package version 0.3.1.). In Package ‘Survminer’; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.3.2. R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Yi, C.; Zhang, Q.; Zhang, H.; Lin, J.; Song, X.; Yang, J.; Wang, B.; Ji, Q.; Chen, J. Evaluation of Protein Bait Manufactured From Brewery Yeast Waste for Controlling Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Èntomol. 2018, 112, 226–235. [Google Scholar] [CrossRef] [PubMed]
Treatment | Positive/Negative Control | Summer-Morph Experiments | Winter-Morph Experiments |
---|---|---|---|
Hanseniaspora uvarum | - | X | X |
Metschnikowia pulcherrima | - | X | |
Candida zemplininia | - | X | X |
M. pulcherrima + H. uvarum | - | X | |
H. uvarum + C. zemplininia | - | X | X |
Water | Negative | X | |
Water | Positive | X | |
YPD media | Negative | X | X |
YPD media | Positive | X | |
Combi-protec | Positive | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.; Eady, P.E.; Goddard, M.R.; Fountain, M.T. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects 2022, 13, 995. https://doi.org/10.3390/insects13110995
Jones R, Eady PE, Goddard MR, Fountain MT. The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects. 2022; 13(11):995. https://doi.org/10.3390/insects13110995
Chicago/Turabian StyleJones, Rory, Paul E. Eady, Matthew R. Goddard, and Michelle T. Fountain. 2022. "The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii" Insects 13, no. 11: 995. https://doi.org/10.3390/insects13110995
APA StyleJones, R., Eady, P. E., Goddard, M. R., & Fountain, M. T. (2022). The Efficacy of Yeast Phagostimulant Baits in Attract-and-Kill Strategies Varies between Summer- and Winter-Morphs of Drosophila suzukii. Insects, 13(11), 995. https://doi.org/10.3390/insects13110995