Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the PTPs
2.2. Preparation of the Aerostatic Bearing and Load Capacity Measurement
2.3. Characterization
3. Results and Discussion
3.1. Fabrication and Surface Microtopography Characterization
3.2. Air Permeability and Tensile Mechanical Properties of the PTPs
3.3. Tensile Fractography
3.4. Load Capacity of the Aerostatic Bearings
4. Conclusions
- (1)
- A novel wet process rolling method was proposed for coarse powder and wire mesh composite rolling. Reducing the rolling speed was useful to improve the rolling effect. Specifically, the phenomenon of uneven distribution of the powders can be eliminated by decreasing the roller speed to 1 r/min and supplemented by wet process rolling.
- (2)
- The PTPs with a larger average pore size and higher porosity exhibit enhanced permeability; however, the larger pore size significantly compromises mechanical strength. More complete metallurgical bonding and a smaller average pore size facilitate achieving higher mechanical performance in PTPs.
- (3)
- Benefiting from the micron-scale pore structure, good permeability, and excellent mechanical properties of PTPs, aerostatic bearings using PTPs as porous restrictors exhibit good load capacity and gas film stiffness. This demonstrates the potential application of PTPs in hydrostatic lubrication.
- (4)
- The aerostatic bearing with CPTPs restrictor shows slightly higher load capacity but lower gas film stiffness compared to the FPTPs restrictor. FPTPs are more suitable than CPTPs for aerostatic bearing restrictors.
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, D.S.; Sun, H.F.; Guo, S.H.; Zhao, D.L.; Li, J.; Zhang, Y.H. Hydrogen storage properties of Mg-based alloys modified with metal-organic frameworks and carbon-based porous materials: A review and summary. Int. J. Hydrogen Energy 2024, 57, 1373–1388. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Lu, H.; Wang, C.; Li, H.L.; Yao, L.; Yu, A.A.; Liu, M.T.; Zuo, H.M.; Ruan, F.T.; et al. From wasted nonwoven fabrics to conductive flexible substrates, composited with electrospun porous carbon nanofibers for supercapacitor electrodes and electromagnetic interference shielding materials. Diamond Relat. Mater. 2025, 155, 112280. [Google Scholar] [CrossRef]
- Yadav, P.K.; Srivastava, P. Impact of porous material and slip condition on the MHD flow of immiscible Couple stress-Newtonian fluids through an inclined channel: Head loss and pressure difference. Chin. J. Phys. 2024, 89, 1198–1221. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, W.; Lu, L.; Huo, D.; Cheng, K. Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribol. Int. 2019, 135, 1–17. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, K.; Rakowski, R.; Soulard, J. An experimental investigation on ultra-precision instrumented smart aerostatic bearing spindle applied to high speed micro-drilling. J. Manuf. Process. 2018, 31, 324–335. [Google Scholar] [CrossRef]
- Belforte, G.; Colombo, F.; Raparelli, T.; Trivella, A.; Viktorov, V. Experimental analysis of air pads with micro holes. Tribol. Trans. 2013, 56, 169–177. [Google Scholar] [CrossRef]
- Fan, G.Z.; Li, Y.H.; Li, Y.H.; Zang, L.B.; Zhao, M.; Li, Z.X.; Yu, H.C.; Xu, J.L.; Liang, H.F.; Zhang, G.Q.; et al. Research on Design and Optimization of Micro-Hole Aerostatic Bearing in Vacuum Environment. Lubricants 2024, 12, 224. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, S.J.; Feng, K. Numerical and experimental study on the effect of surface damages on the performances of porous aerostatic bearings. Tribol. Int. 2022, 175, 107791. [Google Scholar] [CrossRef]
- Zhang, P.; Zha, J. Dynamic accuracy model of porous journal air bearing considering rotational speed. Tribol. Int. 2021, 161, 107064. [Google Scholar] [CrossRef]
- Zhou, D.; Xiong, Y.; Yuan, H.; Luo, G.; Zhang, J.; Shen, Q.; Zhang, L. Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure. Compos. Part B Eng. 2019, 165, 272–278. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.; Xiu, T.; Zhu, B.; Khan, I.; Liu, P.; Zhang, Q.; Zhang, B. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption. Compos. Part B Eng. 2021, 215, 108814. [Google Scholar] [CrossRef]
- Zhang, B.; Pei, X.; Song, P.; Sun, H.; Li, H.; Fan, Y.; Jiang, Q.; Zhou, C.; Zhang, X. Porous bioceramics produced by inkjet 3D printing: Effect of printing ink formulation on the ceramic macro and micro porous architectures control. Compos. Part B Eng. 2018, 155, 112–121. [Google Scholar] [CrossRef]
- Cheng, J.B.; Zhao, H.B.; Cao, M.; Li, M.E.; Zhang, A.N.; Li, S.L.; Wang, Y.Z. Banana Leaflike C-Doped MoS2 Aerogels toward Excellent Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, J.; Li, H.; Zhang, J. Fiber-based flexible composite with dual-gradient structure for sound insulation. Compos. Part B Eng. 2020, 198, 108166. [Google Scholar] [CrossRef]
- Huang, S.F.; Hu, Z.H.; Chen, Z.X.; Yang, D.Y.; Huang, W.L.; Zhang, B. An Experimental Study on the Thermal Performance of a Heat Sink Filled with Porous Aluminum Skeleton/Paraffin Composite Phase Change Material. Materials 2024, 17, 4332. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, U.; Ahmad, J.; Ojard, G.; Smyth, I.; Gowayed, Y.; Jefferson, G. Effect of porosity on the nonlinear and time-dependent behavior of Ceramic Matrix Composites. Compos. Part. B Eng. 2020, 184, 107658. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, G.; Khonsari, M.M.; Zhang, J.; Yang, H. Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J. Mater. Process Technol. 2018, 262, 41–52. [Google Scholar] [CrossRef]
- Roque, R.; Barbosa, G.F.; Guastaldi, A.C. Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach. J. Manuf. Process 2021, 64, 655–663. [Google Scholar] [CrossRef]
- Tang, H.; Weng, C.; Tang, Y.; Li, H.; Xu, T.; Fu, T. Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure. Appl. Therm. Eng. 2021, 183, 116203. [Google Scholar] [CrossRef]
- Xie, C.; Wu, S.; Yu, Y.; Zhang, H.; Hu, Y.; Zhang, M.; Wang, G. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling. J. Mater. Process Technol. 2021, 291, 117039. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z. Production and tensile behavior of novel powder wire mesh composite porous plates. Adv. Eng. Mater. 2021, 23, 2100585. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, W.; Pan, M.; Chen, H.; Liu, W.; Yu, H. Porous copper fiber sintered felts: An innovative catalyst support of methanol steam reformer for hydrogen production. Int. J. Hydrogen Energy 2008, 33, 2950–2956. [Google Scholar] [CrossRef]
- Yu, J.; Hu, X.; Huang, Y. A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials. Sep. Purif. Technol. 2010, 70, 314–319. [Google Scholar] [CrossRef]
- Varol, Y. Natural convection for hot materials confined within two entrapped porous trapezoidal cavities. Int. Commun. Heat. Mass. Transf. 2012, 39, 282–290. [Google Scholar] [CrossRef]
- Biasetto, L.; Innocentini, M.; Chacon, W.; Corradetti, S.; Carturan, S.; Colombo, P.; Andrighetto, A. Gas permeability of lanthanum oxycarbide targets for the SPES project. J. Nucl. Mater. 2013, 440, 70–80. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z. Air permeability and tensile properties of novel micron-scale gradient porous plates fabricated by rolling and vacuum sintering. Powder Technol. 2022, 399, 117205. [Google Scholar] [CrossRef]
- Dukhan, N.; Bağcı, Ö.; Özdemir, M. Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations. Exp. Therm. Fluid Sci. 2014, 57, 425–433. [Google Scholar] [CrossRef]
- Deng, H.; Huang, Y.; Wu, S.; Yang, Y. Binder jetting additive manufacturing: Three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. J. Manuf. Process 2022, 74, 365–373. [Google Scholar] [CrossRef]
- Chen, X.B.; Li, Y.C.; Hodgson, P.D.; Wen, C. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomater. 2009, 5, 2290–2302. [Google Scholar] [CrossRef]
- Vogiatzis, C.A.; Skolianos, S.M. On the sintering mechanisms and microstructure of aluminium–ceramic cenospheres syntactic foams produced by powder metallurgy route. Compos. Part A Appl. Sci. Manuf. 2016, 82, 8–19. [Google Scholar] [CrossRef]
- He, G.; Liu, P.; Tan, Q. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. J. Mech. Behav. Biomed. Mater. 2012, 5, 16–31. [Google Scholar] [CrossRef]
- Chaudhari, G.P.; Acoff, V. Cold roll bonding of multi-layered bi-metal laminate composites. Compos. Sci. Technol. 2009, 69, 1667–1675. [Google Scholar] [CrossRef]
- Jones, K.L.; Laudone, G.M.; Matthews, G.P. A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite. Carbon 2018, 128, 1–11. [Google Scholar] [CrossRef]
- Panzera, T.H.; Rubio, J.C.; Bowen, C.R.; Walker, P.J. Microstructural design of materials for aerostatic bearings. Cem. Concr. Compos. 2008, 30, 649–660. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Liu, D.; Chen, J.; Zhang, D.; Wu, Z. Permeability of the porous Al2O3 ceramic with bimodal pore size distribution. Ceram. Int. 2019, 45, 5952–5957. [Google Scholar] [CrossRef]
- Dele-Afolabi, T.T.; Azmah Hanim, M.A.; Ojo-Kupoluyi, O.J.; Calin, R.; Zuhri, M.Y.M. Tailored pore structures and mechanical properties of porous alumina ceramics prepared with corn cob pore-forming agent. Int. J. Appl. Ceram. Technol. 2020, 18, 244–252. [Google Scholar] [CrossRef]
- Scherm, F.; Völkl, R.; Neubrand, A.; Bosbach, F.; Glatzel, U. Mechanical characterisation of interpenetrating network metal–ceramic composites. Mater. Sci. Eng. A 2010, 527, 1260–1265. [Google Scholar] [CrossRef]
- Lee, K.; Son, C.-Y.; Lee, S.-B.; Lee, S.-K.; Lee, S. Direct observation of microfracture process in metallic-continuous-fiber-reinforced amorphous matrix composites fabricated by liquid pressing process. Mater. Sci. Eng. A 2010, 527, 941–946. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Han, X.-L.; Sun, D.-L. Fabrication and properties of continuous unidirectional Mo fiber reinforced TiAl composites by slurry casting and vacuum hot pressing. Compos. Sci. Technol. 2013, 83, 72–78. [Google Scholar] [CrossRef]
- Wu, Y.K.; Li, C.L.; Li, J.; Du, J.J. Lubrication mechanism and characteristics of aerostatic bearing with close-spaced micro holes. Tribol. Int. 2024, 192, 109278. [Google Scholar] [CrossRef]
- Schenk, C.; Buschmann, S.; Risse, S.; Eberhardt, R.; Tünnermann, A. Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2008, 32, 319–328. [Google Scholar] [CrossRef]
- Luong, T.S.; Potze, W.; Post, J.B.; van Ostayen, R.A.J.; van Beek, A. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors. Tribol. Int. 2004, 37, 825–832. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, D.; Ta, N.; Rao, Z. Numerical research of pressure depression in aerostatic thrust bearing with inherent orifice. Tribol. Int. 2018, 123, 385–396. [Google Scholar] [CrossRef]
Restrictors | Bearing Diameter D (mm) | Restrictor Diameter d (mm) | Restrictor Thickness T (mm) | Porosity P (%) |
---|---|---|---|---|
CPTP | 50 | 24 | 0.91 | 35.16 |
FPTP | 50 | 24 | 0.35 | 25.93 |
PTPs | Most Probable Pore Size (μm) | Mean Pore Size (μm) | Forchheimer Permeability Coefficients K1 (m2) | Inertial Permeability Coefficient K2 (m) |
---|---|---|---|---|
CPTP | 1.9 | 17.6 | 2.31 × 10−12 | 3.26 × 10−8 |
FPTP | 2.7 | 2.9 | 2.13 × 10−14 | 5.2 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhou, Z. Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings. Lubricants 2025, 13, 385. https://doi.org/10.3390/lubricants13090385
Li C, Zhou Z. Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings. Lubricants. 2025; 13(9):385. https://doi.org/10.3390/lubricants13090385
Chicago/Turabian StyleLi, Chaozhong, and Zhaoyao Zhou. 2025. "Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings" Lubricants 13, no. 9: 385. https://doi.org/10.3390/lubricants13090385
APA StyleLi, C., & Zhou, Z. (2025). Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings. Lubricants, 13(9), 385. https://doi.org/10.3390/lubricants13090385