Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics
Abstract
:1. Introduction
2. Graphene Family
3. Hexagonal Boron Nitride (h-BN)
4. Transition Metal Dichalcogenides (TMDs)
5. Molybdenum Disulfide (MoS2)
6. Oil-Based Lubricant Additives
7. Water-Based Lubricant Additives
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribol. Int. 2017, 115, 116–139. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Bart, J.C.J.; Gucciardi, E.; Cavallaro, S. Lubricants: Properties and characteristics. In Biolubricants; Elsevier: Cambridge, UK, 2013; pp. 24–73. [Google Scholar] [CrossRef]
- Raza, A.; Ahmed, A.; Kalam, M.A.; Fattah, I.M.R. Bio-Based Lubricant in the Presence of Additives: Classification to Tribological Behaviour. In Green Tribology; CRC Press: Boca Raton, FL, USA, 2021; pp. 27–70. [Google Scholar] [CrossRef]
- Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent lubricating materials: A review. Compos. Part B Eng. 2020, 202, 108450. [Google Scholar] [CrossRef]
- Singh, A.; Verma, N.; Mamatha, T.G.; Kumar, A.; Singh, S.; Kumar, K. Properties, functions and applications of commonly used lubricant additives: A review. Mater. Today Proc. 2020, 44, 5018–5022. [Google Scholar] [CrossRef]
- Shahnazar, S.; Bagheri, S.; Abd Hamid, S.B. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrog. Energy 2016, 41, 3153–3170. [Google Scholar] [CrossRef]
- Zhu, W.; Kamali, A.R. Green preparation of nanostructured β-MoO3/hexagonal-shaped MoS2/graphene with enhanced lithium-ion storage performance. J. Alloys Compd. 2023, 932, 167724. [Google Scholar] [CrossRef]
- Kamali, A.R.; Feighan, J.; Fray, D.J. Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics. Faraday Discuss. 2016, 190, 451–470. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. Mater. Des. 2017, 135, 319–332. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, T.; Li, Y.; He, Y.; Shi, Y. Two-dimensional (2D) graphene nanosheets as advanced lubricant additives: A critical review and prospect. Mater. Today Commun. 2021, 29, 102755. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-Based Nanomaterials as Lubricant Additives: A Review. Lubricants 2022, 10, 273. [Google Scholar] [CrossRef]
- Nyholm, N.; Espallargas, N. Functionalized carbon nanostructures as lubricant additives—A review. Carbon 2023, 201, 1200–1228. [Google Scholar] [CrossRef]
- Yu, B.; Wang, K.; Pang, X.; Wu, G.; Pu, J.; Zhao, H. Tribological properties of alkylated reduced graphene oxide as lubricant additive. Tribol. Int. 2022, 165, 107273. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L.; Chen, G. Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 2011, 41, 209–215. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Xie, G. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives. Appl. Surf. Sci. 2019, 498, 143683. [Google Scholar] [CrossRef]
- Xie, H.; Dai, J.; Zhou, D. Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces. Int. J. Miner. Metall. Mater. 2022, 29, 1425–1434. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, S.; Zhu, K.; Chen, Y.; Wei, F.; Chen, D. Enhancing the tribological properties and corrosion resistance of graphene-based lubricating grease via ultrasonic-assisted ball milling. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127889. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, 45030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Yin, J.; Qiu, H.; Guo, Y.; Wu, H.; Xue, M. Friction of low-dimensional nanomaterial systems. Friction 2014, 2, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huang, Y.; Li, Y.; Gao, T.; Dou, Z.; Mao, J.; Wang, H.; He, Y.; Li, S.; Luo, J. Superhigh-exfoliation graphene with a unique two-dimensional (2D) microstructure for lubrication application. Appl. Surf. Sci. 2020, 513, 145608. [Google Scholar] [CrossRef]
- Ge, X.; Chai, Z.; Shi, Q.; Li, J.; Tang, J.; Liu, Y.; Wang, W. Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity. Friction 2023, 11, 187–200. [Google Scholar] [CrossRef]
- Kong, S.; Wang, J.; Hu, W.; Li, J. Effects of Thickness and Particle Size on Tribological Properties of Graphene as Lubricant Additive. Tribol. Lett. 2020, 68, 112. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, J.; Ma, L.; Jin, Z.; Prakash, B.; Ma, T.; Wang, W. A review of advances in tribology in 2020–2021. Friction 2022, 10, 1443–1595. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, S.H.; Kwon, S.S.; Park, W.I. Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates. Carbon 2018, 129, 785–789. [Google Scholar] [CrossRef]
- Cho, D.H.; Kim, J.S.; Kwon, S.H.; Lee, C.; Lee, Y.Z. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 2013, 302, 981–986. [Google Scholar] [CrossRef]
- An, L.; Yu, Y.; Bai, C.; Bai, Y.; Zhang, B.; Gao, K.; Wang, X.; Lai, Z.; Zhang, J. Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives. NPJ 2D Mater. Appl. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Y. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 2020, 8, 1007–1024. [Google Scholar] [CrossRef]
- Qiang, R.; Hu, L.; Hou, K.; Wang, J.; Yang, S. Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact. Tribol. Lett. 2019, 67, 64. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Z.; Liu, L.; Cao, Y.; Cheng, Y.; Chen, D. Preparation of chemically functionalized graphene with excellent dispersibility and tribological properties as lubricant additives by microwave-assisted ball milling. J. Mol. Liq. 2021, 344, 117929. [Google Scholar] [CrossRef]
- Song, H.J.; Li, N. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl. Phys. A Mater. Sci. Process. 2011, 105, 827–832. [Google Scholar] [CrossRef]
- Essa, F.A.; Zhang, Q.; Huang, X.; Ali, M.K.A.; Elagouz, A.; Abdelkareem, M.A.A. Effects of ZnO and MoS2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study. Tribol. Lett. 2017, 65, 1–29. [Google Scholar] [CrossRef]
- Tomala, A.; Vengudusamy, B.; Ripoll, M.R.; Suarez, A.N.; Remškar, M.; Rosentsveig, R. Interaction Between Selected MoS2 Nanoparticles and ZDDP Tribofilms. Tribol. Lett. 2015, 59, 26. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanoparticle Res. 2016, 18, 223. [Google Scholar] [CrossRef]
- Srinivas, V.; Thakur, R.N.; Jain, A.K.; Saratchandra Babu, M. Tribological Studies of Transmission Oil Dispersed with Molybdenum Disulfide and Tungsten Disulfide Nanoparticles. J. Tribol. 2017, 139, 041301. [Google Scholar] [CrossRef]
- Yi, M.; Qiu, J.; Xu, W. Tribological performance of ultrathin MoS2 nanosheets in formulated engine oil and possible friction mechanism at elevated temperatures. Tribol. Int. 2022, 167, 107426. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, S.K. Tribological performances of hybrid composites of Epoxy, UHMWPE and MoS2 with in situ liquid lubrication against steel and itself. Wear 2021, 486–487, 204072. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Wu, H.; Qin, L.; Dong, G.; Hua, M.; Yang, S.; Zhang, J. An investigation on the lubrication mechanism of MoS2 nano sheet in point contact: The manner of particle entering the contact area. Tribol. Int. 2017, 107, 48–55. [Google Scholar] [CrossRef]
- Wu, P.R.; Li, W.; Feng, Y.M.; Ge, T.; Liu, Z.; Cheng, Z.L. Fabrication and tribological properties of oil- soluble MoS2 nanosheets decorated by oleic diethanolamide borate. J. Alloys Compd. 2019, 770, 441–450. [Google Scholar] [CrossRef]
- Wu, H.; Johnson, B.; Wang, L.; Dong, G.; Yang, S.; Zhang, J. High-efficiency preparation of oil-dispersible MoS2 nanosheets with superior anti-wear property in ultralow concentration. J. Nanoparticle Res. 2017, 19, 339. [Google Scholar] [CrossRef]
- Rajendhran, N.; Palanisamy, S.; Periyasamy, P.; Venkatachalam, R. Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribol. Int. 2018, 118, 314–328. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Johnson, B.; Yang, S.; Zhang, J.; Dong, G. Investigation on the lubrication advantages of MoS2 nanosheets compared with ZDDP using block-on-ring tests. Wear 2018, 394–395, 40–49. [Google Scholar] [CrossRef]
- Rosentsveig, R.; Gorodnev, A.; Feuerstein, N.; Friedman, H.; Zak, A.; Fleischer, N.; Tannous, J.; Dassenoy, F.; Tenne, R. Fullerene-like MoS 2 nanoparticles and their tribological behavior. Tribol. Lett. 2009, 36, 175–182. [Google Scholar] [CrossRef]
- Cizaire, L.; Vacher, B.; Le Mogne, T.; Martin, J.M.; Rapoport, L.; Margolin, A.; Tenne, R. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 2002, 160, 282–287. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Liu, C.; Zhang, D.; Wang, Y.; Tang, H.; Li, C. Synthesis and tribological properties of flower-like MoS2 microspheres. Ceram. Int. 2014, 40, 11575–11580. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Xue, M.; Ye, X.; Lei, W.; Tang, H.; Li, C. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater. Lett. 2015, 148, 67–70. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, B.; Lin, Z.; Shu, D.; Ma, L. Hydrothermal synthesis of flower-like MoS2nanospheres for electrochemical supercapacitors. J. Nanosci. Nanotechnol. 2014, 14, 7250–7254. [Google Scholar] [CrossRef]
- Tomala, A.; Ripoll, M.R.; Gabler, C.; Remškar, M.; Kalin, M. Interactions between MoS2 nanotubes and conventional additives in model oils. Tribol. Int. 2017, 110, 140–150. [Google Scholar] [CrossRef]
- Tomala, A.; Ripoll, M.R.; Kogovšek, J.; Kalin, M.; Bednarska, A.; Michalczewski, R.; Szczerek, M. Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribol. Int. 2019, 129, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Yi, M.; Zhang, C. The synthesis of MoS2 particles with different morphologies for tribological applications. Tribol. Int. 2017, 116, 285–294. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, Y.; Ye, X.; Xu, H.; Xue, M. Preparation, characterization and tribological properties of ultrathin MoS2 nanosheets. Mater. Res. Express 2017, 4, 115011. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Luo, J. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives. Chin. J. Mech. Eng. 2016, 29, 439–444. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Pan, G.; Luo, J. A comparative study between graphene oxide and diamond nanoparticles as water-based lubricating additives. Sci. China Technol. Sci. 2013, 56, 152–157. [Google Scholar] [CrossRef]
- Kamali, A.R. Green Production of Carbon Nanomaterials in Molten Salts and Applications; Springer: Singapore, 2022. [Google Scholar]
- Mutyala, K.C.; Wu, Y.A.; Erdemir, A.; Sumant, A.V. Graphene—MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon 2019, 146, 524–527. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Yue, Z.; Li, W.; Li, H.; Zhu, M. Synergistic lubrication mechanisms of molybdenum disulfide film under graphene-oil lubricated conditions. Appl. Surf. Sci. 2022, 598, 153845. [Google Scholar] [CrossRef]
- Zaharin, H.A.; Ghazali, M.J.; Rasheed, A.K.; Khalid, M.; Otsuka, Y. Tribological Performance of Hybrid Ti3C2/Graphene Additive on Outboard Engine Oil. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 146–153. [Google Scholar] [CrossRef]
- Xu, C.; Ye, Z.; Egberts, P. Friction hysteretic behavior of supported atomically thin nanofilms. NPJ 2D Mater. Appl. 2023, 7, 1. [Google Scholar] [CrossRef]
- Li, C.; Tang, W.; Tang, X.Z.; Yang, L.; Bai, L. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems. Tribol. Int. 2022, 167, 107356. [Google Scholar] [CrossRef]
Solid Lubricants | Liquid Lubricants | |
---|---|---|
Advantages | More effective than fluid lubricants at high loads and high speeds. Highly stable in extreme conditions (high operating temperatures, reactive, and high radiation environments). High resistance to abrasion in high dust environments. Minimal degradation (no migration of lubricants) Good long-term storage. No viscosity effects. Corrosion protection. | Long endurance lives. Resupply possible. Low mechanical noise. High heat dissipation (ease to use in recirculating systems). Very low friction in elastohydrodynamic lubrication regime. No wear in hydrodynamic or elastohydrodynamic regimes. No wear debris. Excellent cleaning and flushing capability. |
IDisadvantages | Life determined by lube wear. Poor thermal characteristics (no heat dissipation). Reapplication difficult or impossible. Higher coefficients of friction and wear than for hydrodynamic lubrication. Poor self-healing properties. | Lubrication is temperature dependent (viscosity, creep, and vapor pressure). Seals or barrier coating needed to prevent creep. Friction dependent on speed. Endurance life is dependent on lubricant degradation or loss. Additives are necessary for boundary lubrication regime. Long-term storage difficult. |
2D Nanomaterial | Synthesis Method | Mating Surfaces (Conditions) | Tribological Properties | Ref. | |
---|---|---|---|---|---|
COF | Wear | ||||
Graphene quantum dots (GQDs) | Hydrothermal and dialysis route | AISI 52100-GCr15 steel (ball on disc, 20 Hz, 100 N, 60 min) | 0.23 (0.5 to 8 mg/mL) | 6 µm3/Ns (wear rate) | [29] |
rGO | unknown | GCr 15 bearing steel (ball on plate, 5 mm/s, 40 N) | 0.105–0.11 (0.1 to 0.8 mg/mL) | 7.2 × 10−7 mm3/Nm | [23] |
Super-exfoliated GO (SRGO) | Modified Hummer’s method | AISI 52100 steel (ball on disc, 3 mm/s, 0.6–1.6 GPa) | <0.08 (0.5 wt%) | 80 × 103 nm3 (wear volume) | [21] |
Hexagonal boron nitride nanosheets (h-BNNSs) | Solvent-free mechanical exfoliation | Si3N4 and Al2O3 balls (ball on disc, 1–8 Hz, 1–8 N, 30 min) | <0.01 (0.3 mg/mL) | 21.3 (wear rate µm2/Nm) | [27] |
rGO | Hummer’s method | 100Cr6 steel (ball on disc, 4 cm/s, 1–5 N) | 0.06 (0.1 mg/mL) | 2 × 10−7 mm3/Nm | [19] |
Graphene | Microwave-assisted ball milling | (four-ball friction tester, 1200 rpm, 392 N) | 0.1 (0.11 mg/mL) | 0.35 mm (wear scar diameter) | [30] |
Graphene platelets | Reflux reaction with stearic and oleic acids | GCr15A bearing steel (MS-10A four-ball machine, 1450 rpm, 147 N, 60 min) | 0.12 (0.075 wt%) | 0.2% (wear rate) | [15] |
GO nanosheets | Hummer and Offeman’s method | GCr15 bearing steel (UMT-2-ball-plate, 120 rpm, 10 N, 10 min) | 0.127 (0.1 wt%) | 0.275 mm (wear scar diameter) | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellanos-Leal, E.L.; Osuna-Zatarain, A.; Garcia-Garcia, A. Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics. Lubricants 2023, 11, 137. https://doi.org/10.3390/lubricants11030137
Castellanos-Leal EL, Osuna-Zatarain A, Garcia-Garcia A. Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics. Lubricants. 2023; 11(3):137. https://doi.org/10.3390/lubricants11030137
Chicago/Turabian StyleCastellanos-Leal, Edgar Leonardo, Angel Osuna-Zatarain, and Alejandra Garcia-Garcia. 2023. "Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics" Lubricants 11, no. 3: 137. https://doi.org/10.3390/lubricants11030137
APA StyleCastellanos-Leal, E. L., Osuna-Zatarain, A., & Garcia-Garcia, A. (2023). Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics. Lubricants, 11(3), 137. https://doi.org/10.3390/lubricants11030137