Infrared Observations of Planetary Nebulae and Related Objects
Abstract
:1. Introduction
2. Physical Processes and Observing Techniques
- Dust emission and scatterring;
- Gas emission (via lines such as H, CO, Br, Ne II etc ...);
- Gas absorption (CO, C, CH ...);
- Emission from large molecules/dust (PAHs, fullerenes, 21/30 microns features carriers ...).
- Imaging (with and without adaptive optics);
- Spectroscopy (Long slits, multi-object spectrographs, integral field units ...);
- Polarimetry;
- Interferometry.
3. Space vs. Ground Based Infrared Astronomy
4. Space-Based Spectroscopy and Imaging
5. Ground-Based Infrared Observations
6. Combining Ground and Space-Based Observations
7. The Future
Funding
Conflicts of Interest
References
- Cameron, R.M.; Bader, M.; Mobley, R.E. Design and operation of the NASA 91.5-cm airborne telescope. Appl. Opt. 1971, 10, 2011–2015. [Google Scholar] [CrossRef]
- Temi, P.; Marcum, P.M.; Young, E.; Adams, J.D.; Adams, S.; Andersson, B.G.; Becklin, E.E.; Boogert, A.; Brewster, R.; Burgh, E.; et al. The SOFIA Observatory at the Start of Routine Science Operations:Mission Capabilities and Performance. Astrophys. J. Suppl. Ser. 2014, 212, 24. [Google Scholar] [CrossRef] [Green Version]
- Volk, K.; Kwok, S. On the contribution of interstellar extinction to the 10 micron dust feature in OH/IR stars. Astrophys. J. 1987, 315, 654–665. [Google Scholar] [CrossRef]
- Little-Marenin, I.R. Carbon stars with silicate dust in their circumstellar shells. Astrophys. J. Lett. 1986, 307, L15–L19. [Google Scholar] [CrossRef]
- Waters, L.B.F.M.; Beintema, D.A.; Zijlstra, A.A.; De Koter, A.; Molster, F.J.; Bouwman, J.; De Jong, T.; Pottasch, S.R.; De Graauw, T. Crystalline silicates in Planetary Nebulae with [WC] central stars. Astron. Astrophys. 1998, 331, L61. [Google Scholar]
- Waters, L.B.F.M.; Waelkens, C.; Van Winckel, H.; Molster, F.J.; Tielens, A.G.G.M.; van Loon, J.T.; Morris, P.W.; Cami, J.; Bouwman, J.; De Koter, A.; et al. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle. Nature 1998, 391, 868–871. [Google Scholar] [CrossRef]
- Guzman-Ramirez, L.; Lagadec, E.; Wesson, R.; Zijlstra, A.A.; Müller, A.; Jones, D.; Boffin, H.M.; Sloan, G.C.; Redman, M.P.; Smette, A.; et al. Witnessing the emergence of a carbon star. Mon. Not. R. Astron. Soc. 2015, 451, L1–L5. [Google Scholar] [CrossRef]
- Guzman-Ramirez, L.; Zijlstra, A.A.; NíChuimín, R.; Gesicki, K.; Lagadec, E.; Millar, T.J.; Woods, P.M. Carbon chemistry in Galactic bulge planetary nebulae. Mon. Not. R. Astron. Soc. 2011, 414, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A.A.; Gesicki, K. PAH formation in O-rich planetary nebulae. Mon. Not. R. Astron. Soc. 2014, 441, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S.; Volk, K.M.; Hrivnak, B.J. A 21 micron emission feature in four proto-planetary nebulae. Astrophys. J. Lett. 1989, 345, L51–L54. [Google Scholar] [CrossRef]
- Forrest, W.J.; Houck, J.R.; McCarthy, J.F. A far-infrared emission feature in carbon-rich stars and planetary nebulae. Astrophys. J. 1981, 248, 195–200. [Google Scholar] [CrossRef]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, P.R.; Whiteoak, J.B.; Hughes, S.M.G.; Bessell, M.S.; Gardner, F.F.; Hyland, A.R. SAO/NASA Astrophysics Data System (ADS). SAO/NASA Astrophysics Data System (ADS). Astrophys. J. 1992, 397, 552. [Google Scholar] [CrossRef]
- Lagadec, E.; Zijlstra, A.A.; Sloan, G.C.; Matsuura, M.; Wood, R.P.; Van Loon, J.T.; Harris, G.J.; Blommaert, J.A.D.L.; Hony, S.; Groenewegen, M.A.T.; et al. Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2007, 376, 1270–1284. [Google Scholar] [CrossRef]
- Zijlstra, A.A.; Matsuura, M.; Wood, P.R.; Sloan, G.C.; Lagadec, E.; van Loon, J.T.; Groenewegen, M.A.T.; Feast, M.W.; Menzies, J.W.; Whitelock, P.A.; et al. A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2006, 370, 1961–1978. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.C.; Matsuura, M.; Lagadec, E.; van Loon, J.T.; Kraemer, K.E.; McDonald, I.; Groenewegen, M.A.T.; Wood, P.R.; Bernard-Salas, J.; Zijlstra, A.A. Carbon-rich dust production in metal-poor galaxies in the local group. Astrophys. J. 2012, 752, 140. [Google Scholar] [CrossRef] [Green Version]
- Boyer, M.L.; McQuinn, K.B.; Barmby, P.; Bonanos, A.Z.; Gehrz, R.D.; Gordon, K.D.; Groenewegen, M.A.T.; Lagadec, E.; Lennon, D.; Marengo, M.; et al. An infrared census of dust in nearby galaxies with spitzer (dustings). I. Overview. Astrophys. J. Suppl. Ser. 2015, 216, 10. [Google Scholar] [CrossRef]
- Matsuura, M.; Zijlstra, A.A.; Bernard-Salas, J.; Menzies, J.W.; Sloan, G.C.; Whitelock, P.A.; Wood, P.R.; Cioni, M.R.; Feast, M.W.; Lagadec, E.; et al. Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 2007, 382, 1889–1900. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, M.; Barlow, M.J.; Zijlstra, A.A.; Whitelock, P.A.; Cioni, M.-R.L.; Groenewegen, M.A.T.; Volk, K.; Kemper, F.; Kodama, T.; Lagadec, E. The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution. Mon. Not. R. Astron. Soc. 2009, 396, 918–934. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Meixner, M.; Leitherer, C.; Vijh, U.; Volk, K.; Blum, R.D.; Babler, B.L.; Block, M.; Bracker, S.; Cohen, M.; et al. The mass loss return from evolved stars to the Large Magellanic Cloud: Empirical relations for excess emission at 8 and 24 μm. Astron. J. 2009, 137, 4810. [Google Scholar] [CrossRef]
- Lagadec, E.; Zijlstra, A.A. The trigger of the asymptotic giant branch superwind: The importance of carbon. Mon. Not. R. Astron. Soc. 2008, 390, L59–L63. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.C.; Matsuura, M.; Zijlstra, A.A.; Lagadec, E.; Groenewegen, M.A.T.; Wood, P.R.; Szyszka, C.; Bernard-Salas, J.; van Loon, J.T. Dust Formation in a Galaxy with Primitive Abundances. Science 2009, 323, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Sloan, G.C.; Lagadec, E.; Zijlstra, A.A.; Kraemer, K.E.; Weis, A.P.; Matsuura, M.; Volk, K.; Peeters, E.; Duley, W.W.; Cami, J.; et al. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the magellanic clouds. Astrophys. J. 2014, 791, 28. [Google Scholar] [CrossRef] [Green Version]
- Pagomenos, G.J.; Bernard-Salas, J.; Pottasch, S.R. Neon, sulphur, and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre. Astron. Astrophys. 2018, 615, A29. [Google Scholar] [CrossRef] [Green Version]
- Ueta, T.; Murakawa, K.; Meixner, M. Hubble Space Telescope NICMOS Imaging Polarimetry of Proto-Planetary Nebulae: Probing the Dust Shell Structure via Polarized Light. Astron. J. 2005, 129, 1625. [Google Scholar] [CrossRef] [Green Version]
- Lagadec, E.; Verhoelst, T.; Mékarnia, D.; Suárez, O.; Zijlstra, A.A.; Bendjoya, P.; Szczerba, R.; Chesneau, O.; van Winckel, H.; Barlow, M.J.; et al. A mid-infrared imaging catalogue of post-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2011, 417, 32–92. [Google Scholar]
- Lagadec, E.; Chesneau, O.; Matsuura, M.; de Marco, O.; Pacheco, J.A.D.; Zijlstra, A.A.; Acker, A.; Clayton, G.C.; Lopez, B. New insights on the complex planetary nebula Hen 2-113. Astron. Astrophys. 2006, 448, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Frank, A. Shapes and Shaping of Planetary Nebulae. Annu. Rev. Astron. Astrophys. 2002, 40, 439–486. [Google Scholar] [CrossRef]
- Frank, A.; Chen, Z.; Reichardt, T.; De Marco, O.; Blackman, E.; Nordhaus, J. Planetary Nebulae Shaped by Common Envelope Evolution. Galaxies 2018, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, O.; Collioud, A.; de Marco, O.; Wolf, S.; Lagadec, E.; Zijlstra, A.A.; Rothkopf, A.; Acker, A.; Clayton, G.C.; Lopez, B. A close look into the carbon disk at the core of the planetary nebula CPD-56∘8032. Astron. Astrophys. 2006, 455, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, O.; Lykou, F.; Balick, B.; Lagadec, E.; Matsuura, M.; Smith, N.; Spang, A.; Wolf, S.; Zijlstra, A.A. A silicate disk in the heart of the Ant. Astron. Astrophys. 2007, 473, L29–L32. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, O.; Clayton, G.C.; Lykou, F.; de Marco, O.; Hummel, C.A.; Kerber, F.; Lagadec, E.; Nordhaus, J.; Zijlstra, A.A.; Evans, A. A dense disk of dust around the born-again Sakurai’s object. Astron. Astrophys. 2009, 493, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, M.; Chesneau, O.; Zijlstra, A.A.; Jaffe, W.; Waters, L.B.F.M.; Yates, J.A.; Lagadec, E.; Gledhill, T.; Etoka, S.; Richards, A.M.S. The Compact Circumstellar Material around OH 231.8+4.2. Astrophys. J. Lett. 2006, 646, L123. [Google Scholar] [CrossRef] [Green Version]
- Menut, J.-L.; Chesneau, O.; Bakker, E.; Lopez, B.; Perrin, G.; Leinert, C.; Quirrenbach, A. Revisiting the optical interferometry observations of HR 4049. Astron. Astrophys. 2009, 496, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Lykou, F.; Chesneau, O.; Zijlstra, A.A.; Castro-Carrizo, A.; Lagadec, E.; Balick, B.; Smith, N. A disc inside the bipolar planetary nebula M2-9. Astron. Astrophys. 2011, 527, A105. [Google Scholar] [CrossRef] [Green Version]
- Clayton, G.C.; de Marco, O.; Nordhaus, J.; Green, J.; Rauch, T.; Werner, K.; Chu, Y. Dusty disks around central stars of planetary nebulae. Astron. J. 2014, 147, 142. [Google Scholar] [CrossRef] [Green Version]
- Deroo, P.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Verhoelst, T.; Jaffe, W.; Morel, S.; Paresce, F.; Richichi, A.; Stee, P.; et al. Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry. Astron. Astrophys. 2006, 450, 181. [Google Scholar] [CrossRef] [Green Version]
- Hillen, M.; Kluska, J.; le Bouquin, J.-B.; van Winckel, H.; Berger, J.-P.; Kamath, D.; Bujarrabal, V. Imaging the dust sublimation front of a circumbinary disk. Astron. Astrophys. 2016, 588, L1. [Google Scholar] [CrossRef] [Green Version]
- Kluska, J.; Van Winckel, H.; Hillen, M.; Berger, J.P.; Kamath, D.; Le Bouquin, J.B.; Min, M. VLTI/PIONIER survey of disks around post-AGB binaries-Dust sublimation physics rules. Astron. Astrophys. 2019, 631, A108. [Google Scholar] [CrossRef]
- Forde, K.P.; Gledhill, T.M. Discovery of shocked H2 around OH 231.8+4.2. Mon. Not. R. Astron. Soc. 2012, 421, L49–L53. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, B.; Gatley, I. Molecular hydrogen maps of extended planetary nebulae—The Dumbbell, the Ring, and NGC 2346. Astrophys. J. 1988, 324, 501–515. [Google Scholar] [CrossRef]
- Akras, S.; Gonçalves, D.R.; Ramos-Larios, G. H2 in low-ionisation structures of planetary nebulae. Mon. Not. R. Astron. Soc. 2017, 465, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Manchado, A.; Stanghellini, L.; Villaver, E.; García-Segura, G.; Shaw, R.A.; García-Hernández, D.A. High-resolution imaging of ngc 2346 with gsaoi/gems: Disentangling the planetary nebula molecular structure to understand its origin and evolution. Astrophys. J. 2015, 808, 115. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Cami, J.; Peeters, E.; Bernard-Salas, J.; Doppmann, G.; De Buizer, J. The Formation of Fullerenes in Planetary Nebulae. Galaxies 2018, 6, 101. [Google Scholar] [CrossRef] [Green Version]
- Aleman, I.; Leal-Ferreira, M.L.; Cami, J.; Akras, S.; Ochsendorf, B.; Wesson, R.; Morisset, C.; Cox, N.L.J.; Bernard-Salas, J.; Paladini, C.E.; et al. Characterization of the planetary nebula Tc 1 based on VLT X-shooter observations. Mon. Not. R. Astron. Soc. 2019, 490, 2475–2494. [Google Scholar] [CrossRef]
Wavelength Range | Band |
---|---|
1.1–1.4 microns | J |
1.5–1.8 microns | H |
2.0–2.4 microns | K |
3.0–4.0 microns | L |
4.6–5.0 microns | M |
7.5–14.5 microns | N |
17–25 microns | Q |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagadec, E. Infrared Observations of Planetary Nebulae and Related Objects. Galaxies 2020, 8, 44. https://doi.org/10.3390/galaxies8020044
Lagadec E. Infrared Observations of Planetary Nebulae and Related Objects. Galaxies. 2020; 8(2):44. https://doi.org/10.3390/galaxies8020044
Chicago/Turabian StyleLagadec, Eric. 2020. "Infrared Observations of Planetary Nebulae and Related Objects" Galaxies 8, no. 2: 44. https://doi.org/10.3390/galaxies8020044
APA StyleLagadec, E. (2020). Infrared Observations of Planetary Nebulae and Related Objects. Galaxies, 8(2), 44. https://doi.org/10.3390/galaxies8020044