PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews
Abstract
:1. Introduction
2. Materials and Methods
- Populations: Patients with OSCC and OPMDs.
- 2.
- Intervention: The expression of PD-L1 and PD-1.
- 3.
- Comparator: Normal healthy individuals.
- 4.
- Outcome: The presence of at least one of the following outcomes: overall survival (OS), disease-free survival (DFS), disease specific survival (DSS), progression-free survival (PFS), TMN status, and histological grade.
- 5.
- Studies: Only SRMAs in English were included, without any restriction on the publication date.
- Studies that included head and neck cancer subsets other than oral cancer.
- Oral cavity tumours other than OSCC.
- Animal studies and in vitro studies.
- Studies about oral cancer mentioned as a subset along with other types of body cancer.
- Studies that assessed markers post treatment, such as post-immune-check-point inhibitors, radiotherapy, magnetic resonance imaging (MRI), etc., as these studies monitored treatment response and have a different aim.
- Studies about PD-L1 and PD-1 as a subset within other biomarkers
3. Results
3.1. Studies Characteristics
3.2. Studies Overlap
3.3. Risk of Bias
3.4. Summary of the Findings
3.4.1. The Prognostic Value of PD-L1, Including Overall Survival and Disease-Free Survival
3.4.2. Lymph Node Metastasis and TNM Stage
3.4.3. Sex and PD-L1 Expression
3.4.4. HPV Status and PD-L1 Expression
3.4.5. Expression of PD-L1 and Tumour Recurrence
3.4.6. Histological Grade and PD-L1 Expression
3.4.7. The Cutoff Value of PD-L1 Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSCC | oral squamous cell carcinoma |
OL | oral leukoplakia |
PD-L1 | program death ligand 1 |
PD-1 | programmed death 1 |
HNSCC | head and neck squamous cell carcinoma |
ACT | adoptive T-cell transfer |
EGFR | epidermal growth factor receptor |
CTLA4 | cytotoxic T-lymphocyte protein 4 |
TIM3 | T-cell immunoglobulin-3 |
LAG3 | lymphocyte activation gene-3 |
TIGIT | T-cell immunoglobulin and ITIM domain |
PRIOR | Preferred Reporting Items for Overviews of Reviews |
MOoR | mapping, ordering, overview, and recommendation |
OS | overall survival |
DFS | disease-free survival |
DSS | disease-specific survival |
PFS | progression-free survival |
HR | hazard ratio |
CI | confidence interval |
IHC | immunohistochemistry |
ICI | immune checkpoint inhibitor |
ROB | risk of bias |
SRMA | systematic reviews and meta-analysis |
TPS | tumour proportion score |
CPS | combined positive score |
HPV | human papillomavirus |
irAEs | immune-related adverse effects |
References
- Vigneswaran, N.; Williams, M.D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. N. Am. 2014, 26, 123–141. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, H.; Zemni, I.; Achouri, L.; Mahjoub, N.; Ayedi, M.A.; Ben Safta, I.; Chargui, R.; Rahal, K. Chemoradiotherapy or chemotherapy as adjuvant treatment for resected gastric cancer: Should we use selection criteria? Rep. Pract. Oncol. Radiother. 2021, 26, 266–280. [Google Scholar] [CrossRef]
- Mohan, S.P.; Bhaskaran, M.K.; George, A.L.; Thirutheri, A.; Somasundaran, M.; Pavithran, A. Immunotherapy in Oral Cancer. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. S2), S107–S111. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, Q.; Zhang, Y.; Wen, Z.F.; Dong, H.; Mou, Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front. Cell Dev. Biol. 2022, 10, 941750. [Google Scholar] [CrossRef]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Sanmamed, M.F.; Chen, L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J. 2014, 20, 256–261. [Google Scholar] [CrossRef]
- Nocini, R.; Vianini, M.; Girolami, I.; Calabrese, L.; Scarpa, A.; Martini, M.; Morbini, P.; Marletta, S.; Brunelli, M.; Molteni, G.; et al. PD-L1 in oral squamous cell carcinoma: A key biomarker from the laboratory to the bedside. Clin. Exp. Dent. Res. 2022, 8, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, Y.; Ding, L.; Zhang, C.; Ye, J.; Sun, K.; Cai, S.; He, Y.; Peng, J.; Xu, J. Gastric cancer immune microenvironment score predicts neoadjuvant chemotherapy efficacy and prognosis. J. Pathol. Clin. Res. 2024, 10, e12378. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, N.; Turk, A.A.; Wan, I.; Guttikonda, A.; Dong, J.L.; Zhang, X.; Opyrchal, M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J. Gastroenterol. 2024, 30, 1815–1835. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Fraune, C.; Blessin, N.C.; Lennartz, M.; Kluth, M.; Hube-Magg, C.; Lindhorst, L.; Dahlem, R.; Fisch, M.; Eichenauer, T.; et al. Tumor cell PD-L1 expression is a strong predictor of unfavorable prognosis in immune checkpoint therapy-naive clear cell renal cell cancer. Int. Urol. Nephrol. 2021, 53, 2493–2503. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, J.; Jia, Q.; Shi, Y.; Li, F.; Zhang, L.; Shi, F.; Wang, X.; Wu, S. PD-L1 knockdown suppresses vasculogenic mimicry of non-small cell lung cancer by modulating ZEB1-triggered EMT. BMC Cancer 2024, 24, 633. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015, 6, e1792. [Google Scholar] [CrossRef]
- Cui, Y.X.; Su, X.S. Clinicopathological Features of Programmed Cell Death-ligand 1 Expression in Patients with Oral Squamous Cell Carcinoma. Open Med. 2020, 15, 292–301. [Google Scholar] [CrossRef]
- Kujan, O.; van Schaijik, B.; Farah, C.S. Immune Checkpoint Inhibitors in Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Cancers 2020, 12, 1937. [Google Scholar] [CrossRef]
- Muller, S.; Tilakaratne, W.M. Oral potentially malignant disorders. In Head and Neck Tumours: Chapter 6: Oral Cavity and Mobile Tongue; Odell, E.W., Ed.; WHO: Lyon, France, 2022. [Google Scholar]
- Ries, J.; Agaimy, A.; Wehrhan, F.; Baran, C.; Bolze, S.; Danzer, E.; Frey, S.; Jantsch, J.; Möst, T.; Büttner-Herold, M.; et al. Importance of the PD-1/PD-L1 Axis for Malignant Transformation and Risk Assessment of Oral Leukoplakia. Biomedicines 2021, 9, 194. [Google Scholar] [CrossRef]
- Yagyuu, T.; Hatakeyama, K.; Imada, M.; Kurihara, M.; Matsusue, Y.; Yamamoto, K.; Obayashi, C.; Kirita, T. Programmed death ligand 1 (PD-L1) expression and tumor microenvironment: Implications for patients with oral precancerous lesions. Oral Oncol. 2017, 68, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.; Fernandes, R.M.; Pieper, D.; Tricco, A.C.; Gates, M.; Gates, A.; Hartling, L. Preferred Reporting Items for Overviews of Reviews (PRIOR): A protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. Syst. Rev. 2019, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Kujan, O.; Aguirre-Urizar, J.M.; Bagan, J.V.; González-Moles, M.Á.; Kerr, A.R.; Lodi, G.; Mello, F.W.; Monteiro, L.; Ogden, G.R.; et al. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 2021, 27, 1862–1880. [Google Scholar] [CrossRef] [PubMed]
- Lunny, C.; Brennan, S.E.; McDonald, S.; McKenzie, J.E. Toward a comprehensive evidence map of overview of systematic review methods: Paper 2-risk of bias assessment; synthesis, presentation and summary of the findings; and assessment of the certainty of the evidence. Syst. Rev. 2018, 7, 159. [Google Scholar] [CrossRef]
- Pollock, M.; Fernandes, R.M.; Newton, A.S.; Scott, S.D.; Hartling, L. The impact of different inclusion decisions on the comprehensiveness and complexity of overviews of reviews of healthcare interventions. Syst. Rev. 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Troiano, G.; Caponio, V.C.A.; Zhurakivska, K.; Arena, C.; Pannone, G.; Mascitti, M.; Santarelli, A.; Muzio, L.L. High PD-L1 expression in the tumour cells did not correlate with poor prognosis of patients suffering for oral squamous cells carcinoma: A meta-analysis of the literature. Cell Prolif. 2019, 52, e12537. [Google Scholar] [CrossRef]
- He, J.; Chen, X.F.; Xu, M.G.; Zhao, J. Relationship of programmed death ligand-1 expression with clinicopathological features and prognosis in patients with oral squamous cell carcinoma: A meta-analysis. Arch. Oral Biol. 2020, 114, 104717. [Google Scholar] [CrossRef]
- Lenouvel, D.; González-Moles, M.; Ruiz-Ávila, I.; Gonzalez-Ruiz, L.; Gonzalez-Ruiz, I.; Ramos-García, P. Prognostic and clinicopathological significance of PD-L1 overexpression in oral squamous cell carcinoma: A systematic review and comprehensive meta-analysis. Oral Oncol. 2020, 106, 104722. [Google Scholar] [CrossRef]
- Jungbauer, F.; Affolter, A.; Brochhausen, C.; Lammert, A.; Ludwig, S.; Merx, K.; Rotter, N.; Huber, L. Risk factors for immune-related adverse effects during CPI therapy in patients with head and neck malignancies—A single center study. Front. Oncol. 2024, 14, 1287178. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Zhang, Y.; Zhang, Q.; Zheng, Z.; Liu, S.; Liu, Z.; Meng, L.; Xin, Y.; Jiang, X. Immunotherapy Advances in Locally Advanced and Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma and Its Relationship With Human Papillomavirus. Front. Immunol. 2021, 12, 652054. [Google Scholar] [CrossRef]
- Cyberski, T.F.; Singh, A.; Korzinkin, M.; Mishra, V.; Pun, F.; Shen, L.; Wing, C.; Cheng, X.; Baird, B.; Miao, Y.; et al. Acquired resistance to immunotherapy and chemoradiation in MYC amplified head and neck cancer. npj Precis. Oncol. 2024, 8, 114. [Google Scholar] [CrossRef]
- Normando, A.G.C.; Dos Santos, E.S.; Sá, J.O.; Busso-Lopes, A.F.; De Rossi, T.; Patroni, F.M.S.; Granato, D.C.; Guerra, E.N.S.; Santos-Silva, A.R.; Lopes, M.A.; et al. A meta-analysis reveals the protein profile associated with malignant transformation of oral leukoplakia. Front. Oral Health 2023, 4, 1088022. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, J.; Ren, X.W.; Hu, J.Y.; Du, G.F.; Xu, X.Y. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J. Clin. Immunol. 2012, 32, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Sinha, A.; Srivastava, S.; Mishra, A. A Comparative Study to Assess the Increased Expression of Programmed Cell Death-1 (PD1) and Programmed Cell Death- Ligand-1 (PDL1) in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma. J. Indian Acad. Oral Med. Radiol. 2023, 35, 468–472. [Google Scholar] [CrossRef]
- Greeshma, L.R.; Joseph, A.P.; Sivakumar, T.T.; Pillai, V.R.; Vijayakumar, G. Correlation of PD-1 and PD-L1 expression in oral leukoplakia and oral squamous cell carcinoma: An immunohistochemical study. Sci. Rep. 2023, 13, 21698. [Google Scholar] [CrossRef]
- Sieviläinen, M.; Almahmoudi, R.; Al-Samadi, A.; Salo, T.; Pirinen, M.; Almangush, A. The prognostic value of immune checkpoints in oral squamous cell carcinoma. Oral Dis. 2019, 25, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yin, K.; Zhang, S.; Chen, Z.; Bao, Y.; Li, T. Anti-PD-1 Therapy is Beneficial for the Survival of Patients with Oral Squamous Cell Carcinoma. Cancer Manag. Res. 2022, 14, 2723–2731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ulas, E.B.; Hashemi, S.M.S.; Houda, I.; Kaynak, A.; Veltman, J.D.; Fransen, M.F.; Radonic, T.; Bahce, I. Predictive Value of Combined Positive Score and Tumor Proportion Score for Immunotherapy Response in Advanced NSCLC. JTO Clin. Res. Rep. 2023, 4, 100532. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Basavaraj, V. Evaluation of Programmed Death—Ligand 1 (Pd-L1) Expression in Head and Neck Squamous Cell Carcinoma. Iran. J. Pathol. 2023, 18, 193–201. [Google Scholar] [CrossRef]
- Mishra, P.S.; Sidhu, A.; Dwivedi, G.; Mulajker, D.S.; Awasthi, S. Determining PD-L1 expression in head and neck squamous cell carcinoma using immunohistochemistry. Indian J. Cancer 2022, 59, 474–479. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Rashid, S.; Al-Bozom, I.A. PD-L1 immunostaining: What pathologists need to know. Diagn. Pathol. 2021, 16, 94. [Google Scholar] [CrossRef]
- Cerbelli, B.; Girolami, I.; Eccher, A.; Costarelli, L.; Taccogna, S.; Scialpi, R.; Benevolo, M.; Lucante, T.; Alò, P.L.; Stella, F.; et al. Evaluating programmed death-ligand 1 (PD-L1) in head and neck squamous cell carcinoma: Concordance between the 22C3 PharmDx assay and the SP263 assay on whole sections from a multicentre study. Histopathology 2022, 80, 397–406. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, E.J.; Mulder, F.J.; Koomen, B.M.; Speel, E.J.; van den Hout, M.; de Roest, R.H.; Bloemena, E.; Devriese, L.A.; Willems, S.M. Comparison of three PD-L1 immunohistochemical assays in head and neck squamous cell carcinoma (HNSCC). Mod. Pathol. 2021, 34, 1125–1132. [Google Scholar] [CrossRef]
- Koelzer, V.H.; Gisler, A.; Hanhart, J.C.; Griss, J.; Wagner, S.N.; Willi, N.; Cathomas, G.; Sachs, M.; Kempf, W.; Thommen, D.S.; et al. Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 2018, 73, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Inge, L.J.; Dennis, E. Development and applications of computer image analysis algorithms for scoring of PD-L1 immunohistochemistry. Immunooncol. Technol. 2020, 6, 2–8. [Google Scholar] [CrossRef]
- Kapil, A.; Meier, A.; Zuraw, A.; Steele, K.E.; Rebelatto, M.C.; Schmidt, G.; Brieu, N. Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Sci. Rep. 2018, 8, 17343. [Google Scholar] [CrossRef]
- Blažek, T.; Petráš, M.; Knybel, L.; Cvek, J.; Soumarová, R. Programmed Cell Death Ligand 1 Expression on Immune Cells and Survival in Patients With Nonmetastatic Head and Neck Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e236324. [Google Scholar] [CrossRef]
- Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [Google Scholar] [CrossRef]
- Yang, S.M.; Wu, M.; Han, F.Y.; Sun, Y.M.; Yang, J.Q.; Liu, H.X. Role of HPV status and PD-L1 expression in prognosis of laryngeal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2021, 14, 107–115. [Google Scholar]
- Kanaan, H.; Kourie, H.R.; Awada, A.H. Are virus-induced cancers more sensitive to checkpoint inhibitors? Future Oncol. 2016, 12, 2665–2668. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, F.; Mei, J.; Wang, X.; Zhang, Q.; Wang, H.; Xi, M.; You, Z. Posttranscriptional Control of PD-L1 Expression by 17β-Estradiol via PI3K/Akt Signaling Pathway in ERα-Positive Cancer Cell Lines. Int. J. Gynecol. Cancer 2017, 27, 196–205. [Google Scholar] [CrossRef] [PubMed]
Causes of Variability in PD-L1/PD-1 Expression in Tissue Samples of Oral Squamous Cell Carcinoma (OSCC) | |
---|---|
Factor | Description |
Study sample | Population diversity |
IHC Techniques | Various IHC techniques including differences in the antibody used, staining technique, and assay type can lead to inconsistent findings. |
Cutoff Value | Different studies use varying cutoff values to classify PD-L1 expression as positive or negative, which affects the interpretation of results. |
Scoring technique | Different scoring methods impact outcome reporting. Tumour Proportion Score (TPS) measures PD-L1 positivity in tumour cells, while Combined Positive Score (CPS), which includes both neoplastic and inflammatory cells, is more commonly used and linked to better prognostic outcomes. |
Human factors | Pathologists’ interpretations can introduce a potential error |
First Author Surname | Study (n) | Sample Size | Type of Study | Metanalysis Method Used | p Value, CI, and HR for Overall Survival (OS) | p Value, CI, and HR for Disease-Free Survival (DFS) | p Value, CI, and HR for Disease-Specific Survival (DSS) | p Value, CI, and HR for Lymph Node Metastasis | p Value, CI, and HR for PD-L1 and Sex | HPV Status | Main Findings |
---|---|---|---|---|---|---|---|---|---|---|---|
Troiano et al., 2019 [30] | 10 | 1060 | Prospective and retrospective clinical cohort | Random- effects model | 7 studies assessed (HR, 0.60; 95% CI = 0.33–1.10; p = 0.10) NS I2 = 89% | (HR, 0.62; 95% CI = 0.21–1.88; p = 0.40) NS | (HR, 2.05; 95% CI = 0.53–7.86; p = 0.29) NS | (HR, 1.15; 95% CI = 0.74–1.81; p = 0.53) NS | High expression of PD-L1 is two times more frequent in female patients (OR, 0.5; 95% CI = 0.36–0.69; p < 0.0001) I2 = 0% | N/R | High PD-L1 expression did not correlate with poor prognosis of OSCC patients |
He et al., 2020 [31] | 23 | 3217 | N/R | Random- effects model used for OS, sex, and HPV Fixed-effect model used for lymph node metastasis | 17 studies assessed, 2435 patients (HR = 1.00; 95% CI = 0.76–1.30; p = 0.284) NS | N/R | N/R | Significant correlation (RR = 0.83; 95% CI = 0.76–0.91; p < 0.001) No apparent heterogeneity | 18 studies assessed, positive PD-L1 expression was significantly higher in females (RR = 1.22; 95% CI = 1.07–1.38; p = 0.002) I2 = 56% | 8 studies included, high PD-L1 was significantly correlated with HPV status (RR = 1.30; 95% CI = 1.04–1.62; p = 0.019) I2 = 69.3% | High PD-L1 expression was not related to OS. However, it was significantly related to sex, histological differentiation, TNM stage, and HPV infection status |
Lenouvel et al., 2020 [22] | 26 | 2532 | N/R | Random- effects model | 13 studies assessed, 1380 patients (HR = 1.00; 95% CI = 0.75–1.35; p = 0.98). NS I2 = 74% (p < 0.00001) | 5 studies assessed, (HR = 1.42; 95% CI = 0.88–2.28; p = 0.15) NS I2 = 56% (p = 0.05) | 8 studies, a statistically significant result was achieved (HR = 1.54; 95% CI = 1.03–2.28; p = 0.03) I2 = 58% (p = 0.01) | 15 studies, 1707 patients, close to significant (OR = 1.35; 95% CI = 0.97–1.88; p = 0.07) I2 = 47% (p = 0.02) | 4 studies, 1683 patients, PD-L1 overexpression was more likely in females (OR = 0.69; 95% CI = 0.53–0.91; p = 0.008) | N/R | PD-L1 expression was not related to OS. Worse prognosis with high PD-L1 in the cell membrane with a cutoff ≥5%, as measured by DSS and DFS |
Yong-Xin Cui1 and Xian-Shuang Su, 2020 [17] | 16 | 1989 | Retrospective | Fixed-effect model | N/R | N/R | N/R | 13 studies, significant correlation (N1–N3: RR = 1.19; 95% CI = 1.06–1.33; p = 0.003). I2 = 40.6% (p = 0.063) | 15 studies, 1947 patients, high PD-L1 expression and female sex (RR = 1.28; 95% CI: 1.16–1.42; p < 0.001). I2 = 23.0% (p = 0.199) | 8 studies, high PD-L1 expression and HPV-associated OSCC (RR = 1.38; 95% CI: 1.14–1.68; p = 0.001). I2 = 59.6% | High PD-L1 expression was correlated with clinicopathological features |
Nocini R et al., 2022 [11] | 12 | 1166 | Prospective and retrospective | N/R | 6 studies, 649 patients, lack of prognostic role of PD-L1 (HR for OS = 0.97; 95% CI = 0.53–1.80) NS | HR for DFS = 0.83; 95% CI = 0.47–1.46 | N/R | N/R | N/R | N/R | A lack of prognostic significance of PD-L1 in OSCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Azzawi, H.M.A.; Hamza, S.A.; Paolini, R.; Lim, M.; Patini, R.; Celentano, A. PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews. J. Pers. Med. 2025, 15, 126. https://doi.org/10.3390/jpm15040126
Al-Azzawi HMA, Hamza SA, Paolini R, Lim M, Patini R, Celentano A. PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews. Journal of Personalized Medicine. 2025; 15(4):126. https://doi.org/10.3390/jpm15040126
Chicago/Turabian StyleAl-Azzawi, Huda Moutaz Asmael, Syed Ameer Hamza, Rita Paolini, Mathew Lim, Romeo Patini, and Antonio Celentano. 2025. "PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews" Journal of Personalized Medicine 15, no. 4: 126. https://doi.org/10.3390/jpm15040126
APA StyleAl-Azzawi, H. M. A., Hamza, S. A., Paolini, R., Lim, M., Patini, R., & Celentano, A. (2025). PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews. Journal of Personalized Medicine, 15(4), 126. https://doi.org/10.3390/jpm15040126