Neoadjuvant Androgen Receptor Signaling Inhibitors before Radical Prostatectomy for Non-Metastatic Advanced Prostate Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Study Selection and Characteristics
3.2. Endocrinological Outcomes
3.3. Pathologic Responses
3.3.1. ARSI Monotherapy
3.3.2. Single ARSI Plus ADT
3.3.3. Double ARSIs Plus ADT
3.3.4. Chemotherapy Plus ARSI Plus ADT
3.4. The association of Possible Biomarkers with Pathologic Outcomes
3.5. Oncologic Outcomes after Neoadjuvant ARSI-Based Therapy Followed by RP
3.6. Radiographic Assessment of Treatment Efficacy in Patients Treated with Neoadjuvant Hormonal Therapy
3.7. Safety
3.7.1. Treatment-Emergent Adverse Events
3.7.2. Perioperative Complications
4. Discussion and Future Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Azad, A.A.; Iguchi, T.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Alcaraz, A.; Alekseev, B.; Shore, N.D.; et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2022, 40, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Chowdhury, S.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez, A.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J. Clin. Oncol. 2021, 39, 2294–2303. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Foulon, S.; Carles, J.; Roubaud, G.; McDermott, R.; Fléchon, A.; Tombal, B.; Supiot, S.; Berthold, D.; Ronchin, P.; et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet 2022, 399, 1695–1707. [Google Scholar] [CrossRef]
- Smith, M.R.; Hussain, M.; Saad, F.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Kopyltsov, E.; Park, C.H.; Alekseev, B.; Montesa-Pino, A.; et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Rajwa, P.; Pradere, B.; Gandaglia, G.; van den Bergh, R.C.N.; Tsaur, I.; Shim, S.R.; Yanagisawa, T.; Laukhtina, E.; Mori, K.; Mostafaei, H.; et al. Intensification of Systemic Therapy in Addition to Definitive Local Treatment in Nonmetastatic Unfavourable Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2022, 82, 82–96. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Rajwa, P.; Thibault, C.; Gandaglia, G.; Mori, K.; Kawada, T.; Fukuokaya, W.; Shim, S.R.; Mostafaei, H.; Motlagh, R.S.; et al. Androgen Receptor Signaling Inhibitors in Addition to Docetaxel with Androgen Deprivation Therapy for Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2022, 82, 584–598. [Google Scholar] [CrossRef]
- Leow, J.J.; Chong, Y.L.; Chang, S.L.; Valderrama, B.P.; Powles, T.; Bellmunt, J. Neoadjuvant and Adjuvant Chemotherapy for Upper Tract Urothelial Carcinoma: A 2020 Systematic Review and Meta-analysis, and Future Perspectives on Systemic Therapy. Eur. Urol. 2021, 79, 635–654. [Google Scholar] [CrossRef]
- Pfister, C.; Gravis, G.; Fléchon, A.; Chevreau, C.; Mahammedi, H.; Laguerre, B.; Guillot, A.; Joly, F.; Soulié, M.; Allory, Y.; et al. Dose-Dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients With Nonmetastatic Muscle-Invasive Bladder Cancer: Results of the GETUG-AFU V05 VESPER Trial. J. Clin. Oncol. 2022, 40, 2013–2022. [Google Scholar] [CrossRef]
- Shelley, M.D.; Kumar, S.; Wilt, T.; Staffurth, J.; Coles, B.; Mason, M.D. A systematic review and meta-analysis of randomised trials of neo-adjuvant hormone therapy for localised and locally advanced prostate carcinoma. Cancer Treat. Rev. 2009, 35, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Taplin, M.E.; Montgomery, B.; Logothetis, C.J.; Bubley, G.J.; Richie, J.P.; Dalkin, B.L.; Sanda, M.G.; Davis, J.W.; Loda, M.; True, L.D.; et al. Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: Results of a randomized phase II neoadjuvant study. J. Clin. Oncol. 2014, 32, 3705–3715. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, B.; Tretiakova, M.S.; Joshua, A.M.; Gleave, M.E.; Fleshner, N.; Bubley, G.J.; Mostaghel, E.A.; Chi, K.N.; Lin, D.W.; Sanda, M.; et al. Neoadjuvant Enzalutamide Prior to Prostatectomy. Clin. Cancer Res. 2017, 23, 2169–2176. [Google Scholar] [CrossRef] [Green Version]
- McKay, R.R.; Ye, H.; Xie, W.; Lis, R.; Calagua, C.; Zhang, Z.; Trinh, Q.D.; Chang, S.L.; Harshman, L.C.; Ross, A.E.; et al. Evaluation of Intense Androgen Deprivation Before Prostatectomy: A Randomized Phase II Trial of Enzalutamide and Leuprolide With or Without Abiraterone. J. Clin. Oncol. 2019, 37, 923–931. [Google Scholar] [CrossRef]
- Efstathiou, E.; Davis, J.W.; Pisters, L.; Li, W.; Wen, S.; McMullin, R.P.; Gormley, M.; Ricci, D.; Titus, M.; Hoang, A.; et al. Clinical and Biological Characterisation of Localised High-risk Prostate Cancer: Results of a Randomised Preoperative Study of a Luteinising Hormone-releasing Hormone Agonist with or Without Abiraterone Acetate plus Prednisone. Eur. Urol. 2019, 76, 418–424. [Google Scholar] [CrossRef]
- McKay, R.R.; Xie, W.; Ye, H.; Fennessy, F.M.; Zhang, Z.; Lis, R.; Calagua, C.; Rathkopf, D.; Laudone, V.P.; Bubley, G.J.; et al. Results of a Randomized Phase II Trial of Intense Androgen Deprivation Therapy prior to Radical Prostatectomy in Men with High-Risk Localized Prostate Cancer. J. Urol. 2021, 206, 80–87. [Google Scholar] [CrossRef]
- Devos, G.; Tosco, L.; Baldewijns, M.; Gevaert, T.; Goffin, K.; Petit, V.; Mai, C.; Laenen, A.; Raskin, Y.; Van Haute, C.; et al. ARNEO: A Randomized Phase II Trial of Neoadjuvant Degarelix with or Without Apalutamide Prior to Radical Prostatectomy for High-risk Prostate Cancer. Eur. Urol. 2022. [Google Scholar] [CrossRef]
- Bastos, D.A.; Coelho, R.; Cardili, L.; Galiza, F.; Ilario, E.N.; Viana, P.; Murta, C.B.; Guglielmetti, G.; Cordeiro, M.; Jr, J.P.; et al. Randomized phase II trial of neoadjuvant androgen deprivation therapy plus abiraterone and apalutamide for patients with high-risk localized prostate cancer: Pathologic response and PSMA imaging correlates. J. Clin. Oncol. 2022, 40, 5085. [Google Scholar] [CrossRef]
- Fleshner, N.E.; Hansen, A.R.; Chin, J.; Winquist, E.; Kwast, T.V.D.; Lajkosz, K.; Kenk, M.; Berlin, D.; Veloso, R.; Sridhar, S.S.; et al. Randomized phase II trial of neoadjuvant abiraterone plus or minus cabazitaxel in high-risk prostate cancer: ACDC-RP. J. Clin. Oncol. 2022, 40, 224. [Google Scholar] [CrossRef]
- Graham, L.S.; True, L.D.; Gulati, R.; Schade, G.R.; Wright, J.; Grivas, P.; Yezefski, T.; Nega, K.; Alexander, K.; Hou, W.M.; et al. Targeting backdoor androgen synthesis through AKR1C3 inhibition: A presurgical hormonal ablative neoadjuvant trial in high-risk localized prostate cancer. Prostate 2021, 81, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.S.; Sim, A.Y.L.; Ong, C.W.; Yang, X.; Ng, C.C.Y.; Liu, W.; Rajasegaran, V.; Lim, A.M.S.; Aslim, E.J.; Ngo, N.T.; et al. NEAR trial: A single-arm phase II trial of neoadjuvant apalutamide monotherapy and radical prostatectomy in intermediate- and high-risk prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, N.; Hovens, C.; Howard, N.; Bugeja, P.; Kerger, M.; Peters, J.; Clarke, D.; Grummet, J.; Dundee, P.; Pedersen, J.; et al. The predictive value of ARv7 expression in localized prostate caner treated with abiraterone, degarelix, and bicalutamide. J. Clin. Oncol. 2015, 33, 71. [Google Scholar] [CrossRef]
- Chen, M.; Zhuang, J.; Fu, Y.; Guo, S.; Zang, S.; Ai, S.; Qiu, X.; Wang, F.; Guo, H. Can (68)Ga-PSMA-11 Positron Emission Tomography/Computerized Tomography Predict Pathological Response of Primary Prostate Cancer to Neoadjuvant Androgen Deprivation Therapy? A Pilot Study. J. Urol. 2021, 205, 1082–1089. [Google Scholar] [CrossRef]
- Gold, S.A.; VanderWeele, D.J.; Harmon, S.; Bloom, J.B.; Karzai, F.; Hale, G.R.; Marhamati, S.; Rayn, K.N.; Mehralivand, S.; Merino, M.J.; et al. mpMRI preoperative staging in men treated with antiandrogen and androgen deprivation therapy before robotic prostatectomy. Urol. Oncol. 2019, 37, 352.e325–352.e330. [Google Scholar] [CrossRef]
- McKay, R.R.; Berchuck, J.; Kwak, L.; Xie, W.; Silver, R.; Bubley, G.J.; Chang, P.K.; Wagner, A.; Zhang, Z.; Kibel, A.S.; et al. Outcomes of Post-Neoadjuvant Intense Hormone Therapy and Surgery for High Risk Localized Prostate Cancer: Results of a Pooled Analysis of Contemporary Clinical Trials. J. Urol. 2021, 205, 1689–1697. [Google Scholar] [CrossRef]
- Wilkinson, S.; Ye, H.; Karzai, F.; Harmon, S.A.; Terrigino, N.T.; VanderWeele, D.J.; Bright, J.R.; Atway, R.; Trostel, S.Y.; Carrabba, N.V.; et al. Nascent Prostate Cancer Heterogeneity Drives Evolution and Resistance to Intense Hormonal Therapy. Eur. Urol. 2021, 80, 746–757. [Google Scholar] [CrossRef]
- Tewari, A.K.; Cheung, A.T.M.; Crowdis, J.; Conway, J.R.; Camp, S.Y.; Wankowicz, S.A.; Livitz, D.G.; Park, J.; Lis, R.T.; Bosma-Moody, A.; et al. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep. 2021, 36, 109665. [Google Scholar] [CrossRef]
- Sterling, J.; Chua, K.; Patel, H.; Kim, I. Interim analysis of phase 2 randomized prospective study on neoadjuvant apalutamide/abiraterone acetate with prednisone and the feasibility of performing nerve-sparing radical prostatectomy in men with high-risk prostate cancer (NCT02949284). J. Urol. 2020, 203, E249. [Google Scholar] [CrossRef]
- Bright, J.R.; Lis, R.T.; Ku, A.T.; Terrigino, N.T.; Whitlock, N.C.; Trostel, S.Y.; Carrabba, N.V.; Harmon, S.A.; Turkbey, B.; Wilkinson, S.; et al. Prostate-Specific Membrane Antigen Is a Biomarker for Residual Disease following Neoadjuvant Intense Androgen Deprivation Therapy in Prostate Cancer. J. Urol. 2022, 208, 90–99. [Google Scholar] [CrossRef]
- Ilario, E.N.; Bastos, D.A.; Guglielmetti, G.B.; Murta, C.B.; Cardili, L.; Cordeiro, M.D.; Junior, J.P.; Coelho, R.F.; Nahas, W.C. Perioperative Morbidity of Radical Prostatectomy After Intensive Neoadjuvant Androgen Blockade in Men With High-Risk Prostate Cancer: Results of Phase II Trial Compared to a Control Group. Clin. Genitourin Cancer 2022, 21, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Ravi, P.; Kwak, L.; Xie, W.; Kelleher, K.; Acosta, A.M.; McKay, R.R.; Kibel, A.S.; Taplin, M.E. Neoadjuvant Novel Hormonal Therapy Followed by Prostatectomy versus Up-Front Prostatectomy for High-Risk Prostate Cancer: A Comparative Analysis. J. Urol. 2022, 208, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Devlies, W.; Eckstein, M.; Cimadamore, A.; Devos, G.; Moris, L.; Van den Broeck, T.; Montironi, R.; Joniau, S.; Claessens, F.; Gevaert, T. Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells 2020, 9, 2494. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Wyatt, A.W.; Chedgy, E.C.; Donoghue, A.; Annala, M.; Warner, E.W.; Beja, K.; Sigouros, M.; Mo, F.; Fazli, L.; et al. Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clin. Cancer Res. 2017, 23, 6802–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, A.V.; Xie, W.; McMahon, E.; Loffredo, M.; Medeiros, S.; Joseph, D.; Denham, J.; Kumar, P.; Bubley, G.; Sullivan, M.; et al. Radiation and Androgen Deprivation Therapy With or Without Docetaxel in the Management of Nonmetastatic Unfavorable-Risk Prostate Cancer: A Prospective Randomized Trial. J. Clin. Oncol. 2021, 39, 2938–2947. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.A.; Heller, G.; Halabi, S.; Monk, J.P., 3rd; Beltran, H.; Gleave, M.; Evans, C.P.; Clinton, S.K.; Szmulewitz, R.Z.; Coleman, J.; et al. Cancer and Leukemia Group B 90203 (Alliance): Radical Prostatectomy With or Without Neoadjuvant Chemohormonal Therapy in Localized, High-Risk Prostate Cancer. J. Clin. Oncol. 2020, 38, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, S.A.; Hu, C.; Sartor, O.; Gomella, L.G.; Amin, M.B.; Purdy, J.; Michalski, J.M.; Garzotto, M.G.; Pervez, N.; Balogh, A.G.; et al. Effect of Chemotherapy With Docetaxel With Androgen Suppression and Radiotherapy for Localized High-Risk Prostate Cancer: The Randomized Phase III NRG Oncology RTOG 0521 Trial. J. Clin. Oncol. 2019, 37, 1159–1168. [Google Scholar] [CrossRef]
- Kellokumpu-Lehtinen, P.L.; Hjälm-Eriksson, M.; Thellenberg-Karlsson, C.; Åström, L.; Franzen, L.; Fransson, A.S.; Leskinen, M.J.; Zeke, M.; Huttunen, T.; Ginman, C. Docetaxel Versus Surveillance After Radical Radiotherapy for Intermediate- or High-risk Prostate Cancer-Results from the Prospective, Randomised, Open-label Phase III SPCG-13 Trial. Eur. Urol. 2019, 76, 823–830. [Google Scholar] [CrossRef]
- Attard, G.; Murphy, L.; Clarke, N.W.; Cross, W.; Jones, R.J.; Parker, C.C.; Gillessen, S.; Cook, A.; Brawley, C.; Amos, C.L.; et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: A meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet 2022, 399, 447–460. [Google Scholar] [CrossRef]
- Devos, G.; Devlies, W.; De Meerleer, G.; Baldewijns, M.; Gevaert, T.; Moris, L.; Milonas, D.; Van Poppel, H.; Berghen, C.; Everaerts, W.; et al. Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat. Rev. Urol. 2021, 18, 739–762. [Google Scholar] [CrossRef]
- Saad, F.; Efstathiou, E.; Attard, G.; Flaig, T.W.; Franke, F.; Goodman, O.B., Jr.; Oudard, S.; Steuber, T.; Suzuki, H.; Wu, D.; et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): A randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2021, 22, 1541–1559. [Google Scholar] [CrossRef] [PubMed]
- Katayama, S.; Mori, K.; Pradere, B.; Mostafaei, H.; Schuettfort, V.M.; Quhal, F.; Motlagh, R.S.; Laukhtina, E.; Grossmann, N.C.; Rajwa, P.; et al. Comparison of short-term and long-term neoadjuvant hormone therapy prior to radical prostatectomy: A systematic review and meta-analysis. Scand. J. Urol. 2022, 56, 85–93. [Google Scholar] [CrossRef] [PubMed]
First Author | NCT Number | Year | Study Design | Outcome Measurement | Inclusion Criteria | Treatment Regimen | Treatment Duration | No. of Patients | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | C | Total | I | C | ||||||||
RCTs assessing pathologic outcomes | ||||||||||||
Taplin [13] | NCT00924469 | 2014 | Phase II | Pathologic response Safety | ≥3 positive cores, any of: PSA ≥ 10 ng/mL, PSAV ≥ 2 ng/mL/yr, GS ≥ 7 | ABI + ADT (24 w) | ADT (12 w) ABI + ADT (12 w) | 6 M | 58 | 30 | 28 | |
Montgomery [14] | NCT01547299 | 2017 | Phase II | Pathologic response | T1c–T3, ≥3 positive cores, GS ≥ 7, PSA > 10 ng/mL; N0M0 (BS, CT/MRI) | ENZ + DUT + ADT | ENZ | 6 M | 48 | 23 | 25 | |
McKay [15] | NCT02268175 | 2019 | Phase II | Pathologic response Safety | GS ≥ 4 + 3, ≥3 positive cores or >1 cm tumor on MRI, PSA ≥ 20 ng/mL, or T3 on MRI; N < 20 mm, M0 | ABI + ENZ + ADT | ENZ + ADT | 6 M | 75 | 50 | 25 | |
Efstathiou [16] | NCT01088529 | 2019 | Phase II | Pathologic response Safety BCR | ≥T1c with GS 8–10 or ≥T2b with GS 7 N0M0 (BS, CT) | ABI + ADT | ADT | 3 M | 65 | 44 | 21 | |
McKay [17] | NCT02903368 | 2021 | Phase II | Pathologic response Safety | GS ≥ 4 + 3, GS < 3 + 4 with PSA > 20 ng/mL, or T3 (MRI), ≥3 positive cores, tumor >1 cm (MRI), or T3 (MRI); N < 20 mm, M0 | APA + ABI + ADT | ABI + ADT | 6 M | 118 | 59 | 59 | |
Devos [18] | ARNEO NCT03080116 | 2022 | Phase II | Pathologic response Safety | Unfavorable intermediate risk GS 7, PSA 10–20 ng/mL, and/or cT2b (MRI) or high-risk GS 8–10, PSA > 20, cT2c (MRI), and/or cN1 | APA + ADT | ADT | 3 M | 89 | 45 | 40 | |
Bastos [19] | NCT02789878 | 2022 (ASCO-GU) | Phase II | Pathologic response Safety | High-risk GS 8–10 and/or PSA > 20 and/or cT3 (MRI) and/or cN1 | APA + ABI + ADT | ABI + ADT | 3 M | 62 | 31 | 31 | |
Fleshner [20] | NCT02543255 | 2022 (ASCO-GU) | Phase II | Pathologic response Safety | High-risk (D’Amico) GS 8–10 and/or PSA > 20 or T2c-3 based on DRE +/- imaging | CBZ + ABI + ADT | ABI + ADT | 3 M | 70 | 38 | 32 | |
Single-arm studies | ||||||||||||
Graham [21] | ND | 2021 | Phase II | Pathologic response | NCCN high- to very high-risk, N0M0 | Indomethacin + APA + ABI + ADT | 3 M | 20 | ||||
Lee [22] | NEAR | 2022 | Phase II | Pathologic response | D’Amico intermediate- (cT2b or PSA10–20 ng/mL or GS of 7) or high-risk (cT2c-4 or PSA > 20 ng/mL or GS: 8) N0M0 (BS, MRI, CT) | APA | 3 M | 30 | ||||
Corcoran [23] | ND | 2015 | Phase II | Pathologic response Expression of ARv7 | High-risk | ABI + bicalutamide + ADT | 6 M | 17 | ||||
Chen [24] | NCT04356430 | 2021 | Phase II | Predictive value of PSMA PET/CT | High-risk N0M0 ≥cT3(MRI or PSMA PET/CT) or GS 8–10 or PSA ≥ 20 | ABI + ADT | 6 M | 45 | ||||
Gold [25] | NCT02430480 | 2019 | Phase II | Association between mpMRI findings and pathology | Intermediate-risk: cT2b-c or GS 7 or PSA 10–20 or high-risk: ≥cT3 or GS 8–10 or PSA ≥ 20 | ENZ + ADT | 6 M | 20 | ||||
Mckay [26] | NCT00924469 NCT01547299 NCT02268175 | 2021 | Pooled analysis of Phase II RCTs | Time to BCR MFS, OS | Following each RCT’s eligibility criteria | ARSI + ADT | 6 M | 117 | ||||
Wilkinson [27] | NCT02430480 | 2021 | Phase II | Molecular and histologic features and MRI imaging | Intermediate-risk: cT2b-c or GS 7 or PSA 10–20 or high-risk: ≥cT3 or GS 8–10 or PSA ≥ 20 | ENZ + ADT | 6 M | 37 | ||||
Tewari [28] | NCT02268175 NCT02903368 | 2021 | Experimental study | Molecular features on the pretreatment biopsy specimen | Intermediate-risk: cT2b-c or GS 7 or PSA 10–20 or high-risk: ≥cT3 or GS 8–10 or PSA ≥ 20 | ENZ + ABI + ADT APA + ABI +ADT | 6 M | 24 | ||||
Comparative studies | ||||||||||||
Sterling [29] | NCT02949284 | 2020 | Phase II RCT | Potency at 1 year | High-risk GS 8–10 or PSA > 20 | APA | APA + ABI + ADT | RP only | 3 M | 10 * | 7 * | 7 * |
Bright [30] | ND | 2022 | Retrospective | Anti-PSMA staining | High-risk N0M0 | ENZ + ADT | RP only | 6 M | 72 | 35 | 37 | |
Ilario [31] | NCT02789878 | 2022 | Phase II | Perioperative complications | High-risk GS 8–10 and/or PSA > 20 and/or cT3 (MRI) and/or cN1 | ABI ± APA + ADT | RP only | 3 M | 124 | 61 | 63 | |
Ravi [32] | NCT00924469 NCT01547299 NCT02268175 | 2022 | Retrospective IPTW analysis | Time to BCR MFS | Following each RCT’s eligibility criteria | ARSI + ADT | RP only | 6 M | 371 | 112 | 259 |
Author and Year | Proportion of High-Risk pts. | Treatment Regimens | Treatment Duration | Total No. of pts. | pCR, n (%) | MRD < 5 mm, n (%) | Combined Pathologic Response (pCR + MRD), n (%) | ≥cT3, n (%) | ≥ypT3, n (%) |
---|---|---|---|---|---|---|---|---|---|
Lee 2022 [22] | 67% | APA | 3 M | 30 | 0 | ND | ND | 10 (33) | 12 (48) |
Taplin 2014 [13] | 74% | ABI + ADT | 6 M | 30 | 3 (10) | 4 (14) | 7 (23) | 6 (20) | 14 (48) |
ADT followed by ABI + ADT | 3 M + 3 M | 28 | 1 (4) | 0 | 1 (3.6) | 8 (29) | 16 (59) | ||
Montgomery 2017 [14] | 79% | ENZ + DUT + ADT | 6 M | 23 | 1 (4.3) | 3 (13) ** | 4 (17) | 6 (24) | 14 (61) |
ENZ | 25 | 0 | 0 ** | 0 | 6 (22) | 18 (72) | |||
McKay 2019 [15] | 87% | ABI + ENZ + ADT | 6 M | 50 | 5 (10) | 10 (20) | 15 (30) | 16 (32) | 25 (50) |
ENZ + ADT | 25 | 2 (8) | 2 (8) | 4 (16) | 6 (24) | 14 (56) | |||
McKay 2021 [17] | 94% | APA + ABI + ADT | 6 M | 55 | 7 (13) | 5 (9.1) | 12 (22) | 32 (54) | 27 (49) |
ABI + ADT | 59 | 6 (10) | 6 (10) | 12 (20) | 41 (69) | 34 (58) | |||
Devos 2022 [18] | 98% | APA + ADT | 3 M | 45 | 0 | 17 (38) *** | 17 (38) | 33 (74) | 22 (49) |
ADT | 40 | 0 | 4 (9) *** | 4 (9) | 32 (73) | 32 (73) | |||
Bastos 2022 [19] | 100% | APA + ABI + ADT | 3 M | 31 | 1 (3.2) | 1 (3.2) | 2 (6.4) | 49 (79) | 19 (61) |
ABI + ADT | 31 | 0 | 2 (6.4) | 2 (6.4) | 22 (71) | ||||
Fleshner 2022 [20] | 100% | CBZ + ABI + ADT | 3 M | 38 | 2 (5) | 14 (39) **** | 16 (44) | ND | 22 (58) |
ABI + ADT | 32 | 3 (9) | 11 (34) **** | 14 (43) | 19 (59) | ||||
Graham 2022 [21] | 100% | APA + ABI + ADT + Indomethacin | 3 M | 20 | 1 (5) | 6 (30) *** | 7 (35) | 4 (20) | 18 (90) |
First Author | Year | Treatment Regimen | No. of Patients | TEAEs (Any), n (%) | TEAEs (Grade 3), n (%) | Treatment Discontinuation, n (%) | Perioperative Complications(any), n (%) | Perioperative Complications (CD ≥ 3), n (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | C | Total | I | C | I | C | I | C | I | C | I | C | I | C | ||
Comparative studies | ||||||||||||||||
Taplin [13] | 2014 | ABI + ADT (24 w) | ADT (12 w) ABI + ADT (12 w) | 58 | 30 | 28 | 12 w: 28 (93) 24 w: 30 (100) | 12 w: 28 (100) 24 w: 28 (100) | 12 w: 4 (13) 24 w: 7 (23) | 12 w: 2 (7) 24 w: 9 (32) | 12 w: 3 (10) 24 w: 4 (13) | 12 w: 0 24 w: 2 (7) | ND | Any unplanned ER visits 1 (3) | Any unplanned ER visits 3 (11) | |
Montgomery [14] | 2017 | ENZ + DUT + ADT | ENZ | 48 | 23 | 25 | 25/25 (100) | 27/27 (100) | 6 (24) | 3 (11) | 0 | 0 | ND | |||
McKay [15] | 2019 | ABI + ENZ + ADT | ENZ + ADT | 75 | 50 | 25 | Hypertension: 16 (32) ALT increase: 17 (34) AST increase: 16 (32) | Hypertension: 6 (24) ALT increase: 1 (4) AST increase: 2 (8) | Hypertension: 5 (10) ALT increase: 5 (10) AST increase: 5 (10) | Hypertension: 1 (4) ALT increase: 0 AST increase: 0 | ND | 2/47 * (4.3) | 0/24 * (0) | ND | ||
Efstathiou [16] | 2019 | ABI + ADT | ADT | 65 | 44 | 21 | 44 (100) | 21 (100) | 17 (39) | 5 (24) | 5 (11) | 0 | ND | |||
McKay [17] | 2021 | APA + ABI + ADT | ABI + ADT | 118 | 59 | 59 | ND | 8 (14) | 5 (8.5) | ND | Intraoperative 1 (1.8) | Intraoperative 1 (1.8) | Postoperative complications were low and similar between arms | |||
Devos [18] | 2022 | APA + ADT | ADT | 89 | 45 | 40 | ND | Grade 3 rash was observed in four (8.9%) patients in the APA + ADT arm | ND | 7 (16) | 4 (9.1) | 1 (2.2) | 0 | |||
Bastos [19]/ Ilario [31] | 2022 | APA + ABI + ADT | ABI + ADT | 62 | 31 | 31 | ND 2 grade 5 AEs in the intervention arm | 6 (19) | 3 (9.7) | ND | 30-day complications: 18 (30) | 30-day complications: 4 (6.6) Any unplanned ER visits: 7 (12) | ||||
Fleshner [20] | 2022 | CBZ + ABI + ADT | ABI + ADT | 70 | 38 | 32 | ND | 23 (61) | 10 (31) | 7 (9.1) | ND | |||||
Single-arm studies | ||||||||||||||||
Graham [21] | 2021 | Indomethacin + APA + ABI + ADT | 20 | Hot flashes: 18 (82) Fatigue: 16 (73) Cognitive changes: 11 (50) Gastrointestinal disorders: 11 (50) | Hypertension: 6 (27) Increased transaminases: 1 (4) | 1 (4.8) | No unexpected complications at the time that RP appeared after neoadjuvant therapy | |||||||||
Lee [22] | 2022 | APA | 30 | 28 (93) | 0 | 0 | 5/25 (20) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagisawa, T.; Rajwa, P.; Quhal, F.; Kawada, T.; Bekku, K.; Laukhtina, E.; Deimling, M.v.; Chlosta, M.; Karakiewicz, P.I.; Kimura, T.; et al. Neoadjuvant Androgen Receptor Signaling Inhibitors before Radical Prostatectomy for Non-Metastatic Advanced Prostate Cancer: A Systematic Review. J. Pers. Med. 2023, 13, 641. https://doi.org/10.3390/jpm13040641
Yanagisawa T, Rajwa P, Quhal F, Kawada T, Bekku K, Laukhtina E, Deimling Mv, Chlosta M, Karakiewicz PI, Kimura T, et al. Neoadjuvant Androgen Receptor Signaling Inhibitors before Radical Prostatectomy for Non-Metastatic Advanced Prostate Cancer: A Systematic Review. Journal of Personalized Medicine. 2023; 13(4):641. https://doi.org/10.3390/jpm13040641
Chicago/Turabian StyleYanagisawa, Takafumi, Pawel Rajwa, Fahad Quhal, Tatsushi Kawada, Kensuke Bekku, Ekaterina Laukhtina, Markus von Deimling, Marcin Chlosta, Pierre I. Karakiewicz, Takahiro Kimura, and et al. 2023. "Neoadjuvant Androgen Receptor Signaling Inhibitors before Radical Prostatectomy for Non-Metastatic Advanced Prostate Cancer: A Systematic Review" Journal of Personalized Medicine 13, no. 4: 641. https://doi.org/10.3390/jpm13040641